A software framework for construction of process-based stochastic spatio-temporal models and data assimilation

Process-based spatio-temporal models simulate changes over time using equations that represent real world processes. They are widely applied in geography and earth science. Software implementation of the model itself and integrating model results with observations through data assimilation are two important steps in the model development cycle. Unlike most software frameworks that provide tools for either implementation of the model or data assimilation, this paper describes a software framework that integrates both steps. The software framework includes generic operations on 2D map and 3D block data that can be combined in a Python script using a framework for time iterations and Monte Carlo simulation. In addition, the framework contains components for data assimilation with the Ensemble Kalman Filter and the Particle filter. Two case studies of distributed hydrological models show how the framework integrates model construction and data assimilation.

[1]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[2]  A. Weerts,et al.  Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall‐runoff models , 2006 .

[3]  Derek Karssenberg,et al.  A three‐dimensional numerical model of sediment transport, erosion and deposition within a network of channel belts, floodplain and hill slope: extrinsic and intrinsic controls on floodplain dynamics and alluvial architecture , 2008 .

[4]  Carlo Giupponi,et al.  Sustainable management of water resources : an integrated approach , 2006 .

[5]  Bernard Moulin,et al.  PADI-Simul: an agent-based geosimulation software supporting the design of geographic spaces , 2004, Comput. Environ. Urban Syst..

[6]  Derek Karssenberg,et al.  Integrating dynamic environmental models in GIS: The development of a Dynamic Modelling language , 1996, Trans. GIS.

[7]  T. M. Chin,et al.  An Ensemble-Based Smoother with Retrospectively Updated Weights for Highly Nonlinear Systems , 2007 .

[8]  J. Wösten,et al.  Development and use of a database of hydraulic properties of European soils , 1999 .

[9]  K. Beven Rainfall-Runoff Modelling: The Primer , 2012 .

[10]  Christopher Potter,et al.  Modeling Monthly Near-Surface Air Temperature from Solar Radiation and Lapse Rate: Application over Complex Terrain in Yellowstone National Park , 2008 .

[11]  Marc van Kreveld,et al.  Geo-information and computational geometry , 2006 .

[12]  K. Humes,et al.  Seasonal and Synoptic Variations in Near-Surface Air Temperature Lapse Rates in a Mountainous Basin , 2008 .

[13]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[14]  Elizabeth R. Groff,et al.  ‘Situating’ Simulation to Model Human Spatio‐Temporal Interactions: An Example Using Crime Events , 2007, Trans. GIS.

[15]  Monica Wachowicz,et al.  A design and application of a multi-agent system for simulation of multi-actor spatial planning. , 2004, Journal of environmental management.

[16]  Breanndán Ó Nualláin,et al.  Parameter optimisation and uncertainty assessment for large-scale streamflow simulation with the LISFLOOD model , 2007 .

[17]  Edzer J. Pebesma,et al.  Please Scroll down for Article International Journal of Geographical Information Science Interactive Visualization of Uncertain Spatial and Spatio-temporal Data under Different Scenarios: an Air Quality Example Interactive Visualization of Uncertain Spatial and Spatio-temporal Data under Different S , 2022 .

[18]  Derek Karssenberg,et al.  Dynamic environmental modelling in GIS: 1. Modelling in three spatial dimensions , 2005, Int. J. Geogr. Inf. Sci..

[19]  Derek Karssenberg,et al.  The value of environmental modelling languages for building distributed hydrological models , 2002 .

[20]  Derek Karssenberg,et al.  Dynamic environmental modelling in GIS: 2. Modelling error propagation , 2005, Int. J. Geogr. Inf. Sci..

[21]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[22]  Dominique King,et al.  Development of a soil geographic database from the Soil Map of the European Communities , 1994 .

[23]  Derek Karssenberg,et al.  Software Tools for Hydrological Modelling , 2006 .

[24]  David Pullar,et al.  SimuMap: a computational system for spatial modelling , 2004, Environ. Model. Softw..

[25]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[26]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[27]  C. Diks,et al.  Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .

[28]  P. Torrens,et al.  Geosimulation: Automata-based modeling of urban phenomena , 2004 .

[29]  W. Kinzelbach,et al.  Real‐time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem , 2008 .

[30]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[31]  Laura C. Brown,et al.  Using satellite imagery to validate snow distribution simulated by a hydrological model in large northern basins , 2008 .

[32]  Günter Blöschl,et al.  A spatially distributed flash flood forecasting model , 2008, Environ. Model. Softw..

[33]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .

[34]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[35]  G. McCabe,et al.  Assimilation of snow covered area information into hydrologic and land-surface models , 2006 .

[36]  Helmut Rott,et al.  Assimilation of meteorological and remote sensing data for snowmelt runoff forecasting , 2008 .

[37]  Ian P. Prosser,et al.  Modelling and testing spatially distributed sediment budgets to relate erosion processes to sediment yields , 2009, Environ. Model. Softw..

[38]  Paul A. Longley,et al.  Geocomputation: a primer , 1998 .

[39]  Randy Gimblett,et al.  Deriving artificial models of visitors from dispersed patterns of use in the Sierra Nevada Wilderness, California , 2003 .

[40]  P J Sydelko,et al.  An object-oriented framework for dynamic ecosystem modeling: application for integrated risk assessment. , 2001, The Science of the total environment.

[41]  Qingyun Duan,et al.  An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction , 2006 .

[42]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[43]  K. de Jong,et al.  Towards improved solution schemes for Monte Carlo simulation in environmental modeling languages , 2006 .

[44]  Harrie-Jan Hendricks Franssen,et al.  Equally likely inverse solutions to a groundwater flow problem including pattern information from remote sensing images , 2008 .

[45]  Shawn J. Marshall,et al.  Near‐surface‐temperature lapse rates on the Prince of Wales Icefield, Ellesmere Island, Canada: implications for regional downscaling of temperature , 2007 .

[46]  A. Lansink,et al.  Individual-based models in the analysis of disease transmission in plant production chains: An application to potato brown rot , 2006 .

[47]  P. Burrough,et al.  Principles of geographical information systems , 1998 .

[48]  C. Tiedeman,et al.  Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty , 2007 .

[49]  H. Moradkhani Hydrologic Remote Sensing and Land Surface Data Assimilation , 2008, Sensors.

[50]  J. Thielen,et al.  The European Flood Alert System – Part 1: Concept and development , 2008 .

[51]  Christian T. K.-H. Stadtländer,et al.  Individual-based modelling and ecology , 2012 .

[52]  David Makowski,et al.  Application of an interacting particle filter to improve nitrogen nutrition index predictions for winter wheat , 2007 .

[53]  P. J. van Leeuwen,et al.  A variance-minimizing filter for large-scale applications , 2003 .

[54]  J. M. Van Der Knijff,et al.  LISFLOOD : a GIS-based distributed model for river basin scale water balance and flood simulation , 2008 .

[55]  D. Hollinger,et al.  An improved state-parameter analysis of ecosystem models using data assimilation , 2008 .