Linearly Recurrent Circle Map Subshifts and an Application to Schrödinger Operators
暂无分享,去创建一个
[1] B. Iochum,et al. Power law growth for the resistance in the Fibonacci model , 1991 .
[2] D. Damanik. Gordon-type arguments in the spectral theory of one-dimensional quasicrystals , 1999 .
[3] Christian F. Skau,et al. Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.
[4] A. Hof. Some remarks on discrete aperiodic Schrödinger operators , 1993 .
[5] Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators , 1999, math-ph/9907023.
[6] Barry Simon,et al. Singular continuous spectrum for palindromic Schrödinger operators , 1995 .
[7] B. Solomyak. Non-periodicity Implies Unique Composition for Self-similar Translationally--nite Tilings , 1997 .
[8] D. Lenz,et al. Linear Repetitivity, I. Uniform Subadditive Ergodic Theorems and Applications , 2001, Discret. Comput. Geom..
[9] D. Lenz. Uniform ergodic theorems on subshifts over a finite alphabet , 2000, Ergodic Theory and Dynamical Systems.
[10] J. Bellissard,et al. Continuity properties of the electronic spectrum of 1D quasicrystals , 1991 .
[11] L. Raymond,et al. Resistance of one-dimensional quasicrystals , 1992 .
[12] Uniform Spectral Properties of One-Dimensional Quasicrystals, III. α-Continuity , 1999, math-ph/9910017.
[13] Sébastien Ferenczi,et al. Structure of three interval exchange transformations I: an arithmetic study , 2001 .
[14] M. Hörnquist,et al. Singular continuous electron spectrum for a class of circle sequences , 1995 .
[15] M. Casdagli. Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation , 1986 .
[16] Fabien Durand,et al. A characterization of substitutive sequences using return words , 1998, Discret. Math..
[17] András Sütő,et al. Singular continuous spectrum on a cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian , 1989 .
[18] Singular Spectrum of Lebesgue Measure Zero¶for One-Dimensional Quasicrystals , 2001, math-ph/0106012.
[19] Boris Solomyak,et al. Nonperiodicity implies unique composition for self-similar translationally finite Tilings , 1998, Discret. Comput. Geom..
[20] Gérard Rauzy,et al. Échanges d'intervalles et transformations induites , 1979 .
[21] Anton Bovier,et al. Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions , 1993 .
[22] D. Damanik,et al. Uniform spectral properties of one-dimensional quasicrystals , 1999 .
[23] JACOBI MATRICES WITH RANDOM POTENTIALS TAKING FINITELY MANY VALUES , 1989 .
[24] Peter A. B. Pleasants,et al. Repetitive Delone sets and quasicrystals , 2003, Ergodic Theory and Dynamical Systems.
[25] Julien Cassaigne,et al. Sequences with grouped factors , 1997, Developments in Language Theory.
[26] Fabien Durand,et al. Corrigendum and addendum to ‘Linearly recurrent subshifts have a finite number of non-periodic factors’ , 2003, Ergodic Theory and Dynamical Systems.
[27] Boris Adamczewski. Codages de rotations et ph'enom`enes d''autosimilarit'e , 2001 .
[28] Luca Q. Zamboni,et al. A generalization of Sturmian sequences: Combinatorial structure and transcendence , 2000 .
[29] Fabien Durand,et al. Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.
[30] Uniform Spectral Properties of One-Dimensional Quasicrystals, II. The Lyapunov Exponent , 1999, math-ph/9905008.
[31] András Sütő,et al. The spectrum of a quasiperiodic Schrödinger operator , 1987 .
[32] David Damanik,et al. Palindrome complexity bounds for primitive substitution sequences , 2000, Discret. Math..
[33] Jean Bellissard,et al. Spectral properties of one dimensional quasi-crystals , 1989 .
[34] David Damanik,et al. Uniform Spectral Properties of One-Dimensional Quasicrystals, I. Absence of Eigenvalues , 1999 .
[35] Trajectories of rotations , 1999 .
[36] Absence of point spectrum for a class of discrete Schrödinger operators with quasiperiodic potential , 1996 .
[37] D. Damanik,et al. Uniform spectral properties of one-dimensional quasicrystals, iv. quasi-sturmian potentials , 2001, math-ph/0105034.
[38] Dimitri Petritis,et al. Absence of localization in a class of Schrödinger operators with quasiperiodic potential , 1986 .
[39] Günter Rote,et al. Sequences With Subword Complexity 2n , 1994 .
[40] M. Keane. Interval exchange transformations , 1975 .
[41] Sébastien Ferenczi,et al. Rank and symbolic complexity , 1996, Ergodic Theory and Dynamical Systems.