Linearly Recurrent Circle Map Subshifts and an Application to Schrödinger Operators

Abstract. We discuss circle map sequences and subshifts generated by them. We give a characterization of those sequences among them which are linearly recurrent. As an application we deduce zero-measure spectrum for a class of discrete one-dimensional Schrödinger operators with potentials generated by circle maps.

[1]  B. Iochum,et al.  Power law growth for the resistance in the Fibonacci model , 1991 .

[2]  D. Damanik Gordon-type arguments in the spectral theory of one-dimensional quasicrystals , 1999 .

[3]  Christian F. Skau,et al.  Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.

[4]  A. Hof Some remarks on discrete aperiodic Schrödinger operators , 1993 .

[5]  Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators , 1999, math-ph/9907023.

[6]  Barry Simon,et al.  Singular continuous spectrum for palindromic Schrödinger operators , 1995 .

[7]  B. Solomyak Non-periodicity Implies Unique Composition for Self-similar Translationally--nite Tilings , 1997 .

[8]  D. Lenz,et al.  Linear Repetitivity, I. Uniform Subadditive Ergodic Theorems and Applications , 2001, Discret. Comput. Geom..

[9]  D. Lenz Uniform ergodic theorems on subshifts over a finite alphabet , 2000, Ergodic Theory and Dynamical Systems.

[10]  J. Bellissard,et al.  Continuity properties of the electronic spectrum of 1D quasicrystals , 1991 .

[11]  L. Raymond,et al.  Resistance of one-dimensional quasicrystals , 1992 .

[12]  Uniform Spectral Properties of One-Dimensional Quasicrystals, III. α-Continuity , 1999, math-ph/9910017.

[13]  Sébastien Ferenczi,et al.  Structure of three interval exchange transformations I: an arithmetic study , 2001 .

[14]  M. Hörnquist,et al.  Singular continuous electron spectrum for a class of circle sequences , 1995 .

[15]  M. Casdagli Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation , 1986 .

[16]  Fabien Durand,et al.  A characterization of substitutive sequences using return words , 1998, Discret. Math..

[17]  András Sütő,et al.  Singular continuous spectrum on a cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian , 1989 .

[18]  Singular Spectrum of Lebesgue Measure Zero¶for One-Dimensional Quasicrystals , 2001, math-ph/0106012.

[19]  Boris Solomyak,et al.  Nonperiodicity implies unique composition for self-similar translationally finite Tilings , 1998, Discret. Comput. Geom..

[20]  Gérard Rauzy,et al.  Échanges d'intervalles et transformations induites , 1979 .

[21]  Anton Bovier,et al.  Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions , 1993 .

[22]  D. Damanik,et al.  Uniform spectral properties of one-dimensional quasicrystals , 1999 .

[23]  JACOBI MATRICES WITH RANDOM POTENTIALS TAKING FINITELY MANY VALUES , 1989 .

[24]  Peter A. B. Pleasants,et al.  Repetitive Delone sets and quasicrystals , 2003, Ergodic Theory and Dynamical Systems.

[25]  Julien Cassaigne,et al.  Sequences with grouped factors , 1997, Developments in Language Theory.

[26]  Fabien Durand,et al.  Corrigendum and addendum to ‘Linearly recurrent subshifts have a finite number of non-periodic factors’ , 2003, Ergodic Theory and Dynamical Systems.

[27]  Boris Adamczewski Codages de rotations et ph'enom`enes d''autosimilarit'e , 2001 .

[28]  Luca Q. Zamboni,et al.  A generalization of Sturmian sequences: Combinatorial structure and transcendence , 2000 .

[29]  Fabien Durand,et al.  Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.

[30]  Uniform Spectral Properties of One-Dimensional Quasicrystals, II. The Lyapunov Exponent , 1999, math-ph/9905008.

[31]  András Sütő,et al.  The spectrum of a quasiperiodic Schrödinger operator , 1987 .

[32]  David Damanik,et al.  Palindrome complexity bounds for primitive substitution sequences , 2000, Discret. Math..

[33]  Jean Bellissard,et al.  Spectral properties of one dimensional quasi-crystals , 1989 .

[34]  David Damanik,et al.  Uniform Spectral Properties of One-Dimensional Quasicrystals, I. Absence of Eigenvalues , 1999 .

[35]  Trajectories of rotations , 1999 .

[36]  Absence of point spectrum for a class of discrete Schrödinger operators with quasiperiodic potential , 1996 .

[37]  D. Damanik,et al.  Uniform spectral properties of one-dimensional quasicrystals, iv. quasi-sturmian potentials , 2001, math-ph/0105034.

[38]  Dimitri Petritis,et al.  Absence of localization in a class of Schrödinger operators with quasiperiodic potential , 1986 .

[39]  Günter Rote,et al.  Sequences With Subword Complexity 2n , 1994 .

[40]  M. Keane Interval exchange transformations , 1975 .

[41]  Sébastien Ferenczi,et al.  Rank and symbolic complexity , 1996, Ergodic Theory and Dynamical Systems.