Stromal niche inflammation mediated by IL-1 signalling is a targetable driver of haematopoietic ageing

[1]  Patrick M. Helbling,et al.  IL-1 Mediates Microbiome-Induced Inflamm-Ageing of Hematopoietic Stem Cells in Mice. , 2021, Blood.

[2]  Rachel E. Brewer,et al.  Aged skeletal stem cells generate an inflammatory degenerative niche , 2021, Nature.

[3]  E. Passegué,et al.  Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions , 2021, The Journal of experimental medicine.

[4]  S. Morrison,et al.  A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis , 2021, Nature.

[5]  E. Forsberg,et al.  Megakaryocyte progenitor cell function is enhanced upon aging despite the functional decline of aged hematopoietic stem cells , 2021, bioRxiv.

[6]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[7]  A. Trumpp,et al.  Adult blood stem cell localization reflects the abundance of reported bone marrow niche cell types and their combinations. , 2020, Blood.

[8]  F. Hamey,et al.  Differentiation of transplanted haematopoietic stem cells tracked by single-cell transcriptomic analysis , 2020, Nature Cell Biology.

[9]  E. Passegué,et al.  Normal Hematopoiesis Is a Balancing Act of Self-Renewal and Regeneration. , 2020, Cold Spring Harbor perspectives in medicine.

[10]  S. Méndez-Ferrer,et al.  Microenvironmental contributions to hematopoietic stem cell aging , 2019, Haematologica.

[11]  C. López-Otín,et al.  Remodeling of Bone Marrow Hematopoietic Stem Cell Niches Promotes Myeloid Cell Expansion during Premature or Physiological Aging , 2019, Cell stem cell.

[12]  E. Passegué,et al.  TNF-α Coordinates Hematopoietic Stem Cell Survival and Myeloid Regeneration. , 2019, Cell stem cell.

[13]  Patrick M. Helbling,et al.  Combined single-cell and spatial transcriptomics reveals the molecular, cellular and spatial bone marrow niche organization , 2019, Nature Cell Biology.

[14]  Monika S. Kowalczyk,et al.  A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia , 2019, Cell.

[15]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[16]  E. Passegué,et al.  Losing Sense of Self and Surroundings: Hematopoietic Stem Cell Aging and Leukemic Transformation. , 2019, Trends in molecular medicine.

[17]  Michael R. Elliott,et al.  Aged marrow macrophages expand platelet-biased hematopoietic stem cells via Interleukin1B. , 2019, JCI insight.

[18]  R. Satija,et al.  The bone marrow microenvironment at single-cell resolution , 2019, Nature.

[19]  Allon M Klein,et al.  Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. , 2019, Cell systems.

[20]  P. Frenette,et al.  Haematopoietic stem cell activity and interactions with the niche , 2019, Nature Reviews Molecular Cell Biology.

[21]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[22]  Lucas E. Wange,et al.  Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq , 2018, Nature Communications.

[23]  P. Frenette,et al.  Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche , 2018, Nature Medicine.

[24]  A. Letai,et al.  Diminished apoptotic priming and ATM signalling confer a survival advantage onto aged haematopoietic stem cells in response to DNA damage , 2018, Nature Cell Biology.

[25]  Samuel L. Wolock,et al.  Clonal analysis of lineage fate in native hematopoiesis , 2017, Nature.

[26]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[27]  F. Kirchhoff,et al.  Osteopontin attenuates aging‐associated phenotypes of hematopoietic stem cells , 2017, The EMBO journal.

[28]  S. Armstrong,et al.  Myeloid progenitor cluster formation drives emergency and leukemic myelopoiesis , 2017, Nature.

[29]  Junlei Chang,et al.  Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states , 2017, Nature Medicine.

[30]  F. Villarroya,et al.  Brown adipose tissue as a secretory organ , 2017, Nature Reviews Endocrinology.

[31]  M. Manz,et al.  Inflamm-Aging of Hematopoiesis, Hematopoietic Stem Cells, and the Bone Marrow Microenvironment , 2016, Front. Immunol..

[32]  V. Philip,et al.  Br Ief Definitive Repor T , 2022 .

[33]  Bruce J. Aronow,et al.  Single-cell analysis of mixed-lineage states leading to a binary cell fate choice , 2016, Nature.

[34]  S. Morrison,et al.  Leptin Receptor Promotes Adipogenesis and Reduces Osteogenesis by Regulating Mesenchymal Stromal Cells in Adult Bone Marrow. , 2016, Cell stem cell.

[35]  C. Betsholtz,et al.  Age-dependent modulation of vascular niches for haematopoietic stem cells , 2016, Nature.

[36]  R. Pignolo,et al.  Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage. , 2016, Bone.

[37]  E. Pietras,et al.  Chronic interleukin-1 drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal , 2016, Nature Cell Biology.

[38]  I. Macaulay,et al.  Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells , 2016, Nature Communications.

[39]  Berthold Göttgens,et al.  Functionally Distinct Subsets of Lineage-Biased Multipotent Progenitors Control Blood Production in Normal and Regenerative Conditions. , 2015, Cell stem cell.

[40]  E. Passegué,et al.  Normal and leukemic stem cell niches: insights and therapeutic opportunities. , 2015, Cell stem cell.

[41]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[42]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[43]  M. L. Beau,et al.  Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells , 2014, Nature.

[44]  S. Morrison,et al.  Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. , 2014, Cell stem cell.

[45]  K. Novak,et al.  Mutation in osteoactivin decreases bone formation in vivo and osteoblast differentiation in vitro. , 2014, The American journal of pathology.

[46]  S. Morrison,et al.  The bone marrow niche for haematopoietic stem cells , 2014, Nature.

[47]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[48]  M. Almeida,et al.  Basic biology of skeletal aging: role of stress response pathways. , 2013, The journals of gerontology. Series A, Biological sciences and medical sciences.

[49]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[50]  E. Hsiao,et al.  Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. , 2013, Cell stem cell.

[51]  T. Graf,et al.  CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. , 2013, Blood.

[52]  Nathan C Boles,et al.  Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. , 2012, Blood.

[53]  Charles P. Lin,et al.  Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. , 2012, Cell stem cell.

[54]  J. Kaye,et al.  The aging systemic milieu negatively regulates neurogenesis and cognitive function , 2011, Nature.

[55]  J. Campisi,et al.  The senescence-associated secretory phenotype: the dark side of tumor suppression. , 2010, Annual review of pathology.

[56]  I. Weissman,et al.  Stems Cells and the Pathways to Aging and Cancer , 2008, Cell.

[57]  Mary L Bouxsein,et al.  Age‐Related Changes in Trabecular Architecture Differ in Female and Male C57BL/6J Mice , 2007, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[58]  K. Woollard SOLUBLE BIO‐MARKERS IN VASCULAR DISEASE: MUCH MORE THAN GAUGES OF DISEASE? , 2005, Clinical and experimental pharmacology & physiology.

[59]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.