A topological characterisation of hyperbolic groups

We characterise word hyperbolic groups as those groups which act properly discontinuously and cocompactly on the space of distinct triples of a compact metrisable space. This is, in turn, equivalent to a convergence group for which every point of the space is a conical limit point.

[1]  David Gabai Convergence groups are Fuchsian groups , 1992 .

[2]  A. Haefliger,et al.  Group theory from a geometrical viewpoint , 1991 .

[3]  J. Heinonen,et al.  Quasiconformal maps in metric spaces with controlled geometry , 1998 .

[4]  Jean-Pierre Otal,et al.  Sur la géometrie symplectique de l'espace des géodésiques d'une variété à courbure négative. , 1992 .

[5]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[6]  Alan F. Beardon,et al.  Limit points of Kleinian groups and finite sided fundamental polyhedra , 1974 .

[7]  Convergence groups with an invariant component pair , 1992 .

[8]  David Gabai Convergence groups are Fuchsian groups , 1991 .

[9]  Pekka Tukia,et al.  Conical limit points and uniform convergence groups , 1998 .

[10]  D. Jungreis,et al.  Convergence groups and seifert fibered 3-manifolds , 1994 .

[11]  Recognizing constant curvature discrete groups in dimension 3 , 1998 .

[12]  P. Tukia Homeomorphic conjugates of Fuchsian groups. , 1988 .

[13]  M. J. Dunwoody The accessibility of finitely presented groups , 1985 .

[14]  Brian H. Bowditch,et al.  Cut points and canonical splittings of hyperbolic groups , 1998 .

[15]  Gaven Martin,et al.  Discrete Quasiconformal Groups I , 1987 .

[16]  Frédéric Paulin,et al.  Un groupe hyperbolique est d'etermin'e par son bord , 1996 .

[17]  Brian H. Bowditch,et al.  Geometrical finiteness with variable negative curvature , 1995 .

[18]  RECOGNIZING CONSTANT CURVATURE DISCRETE GROUPS IN DIMENSION 3 , 1997 .

[19]  A. I. MathematicaVolumen,et al.  Negatively Curved Groups Have the Convergence Property I , 1995 .