A topological characterisation of hyperbolic groups
暂无分享,去创建一个
[1] David Gabai. Convergence groups are Fuchsian groups , 1992 .
[2] A. Haefliger,et al. Group theory from a geometrical viewpoint , 1991 .
[3] J. Heinonen,et al. Quasiconformal maps in metric spaces with controlled geometry , 1998 .
[4] Jean-Pierre Otal,et al. Sur la géometrie symplectique de l'espace des géodésiques d'une variété à courbure négative. , 1992 .
[5] É. Ghys,et al. Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .
[6] Alan F. Beardon,et al. Limit points of Kleinian groups and finite sided fundamental polyhedra , 1974 .
[7] Convergence groups with an invariant component pair , 1992 .
[8] David Gabai. Convergence groups are Fuchsian groups , 1991 .
[9] Pekka Tukia,et al. Conical limit points and uniform convergence groups , 1998 .
[10] D. Jungreis,et al. Convergence groups and seifert fibered 3-manifolds , 1994 .
[11] Recognizing constant curvature discrete groups in dimension 3 , 1998 .
[12] P. Tukia. Homeomorphic conjugates of Fuchsian groups. , 1988 .
[13] M. J. Dunwoody. The accessibility of finitely presented groups , 1985 .
[14] Brian H. Bowditch,et al. Cut points and canonical splittings of hyperbolic groups , 1998 .
[15] Gaven Martin,et al. Discrete Quasiconformal Groups I , 1987 .
[16] Frédéric Paulin,et al. Un groupe hyperbolique est d'etermin'e par son bord , 1996 .
[17] Brian H. Bowditch,et al. Geometrical finiteness with variable negative curvature , 1995 .
[18] RECOGNIZING CONSTANT CURVATURE DISCRETE GROUPS IN DIMENSION 3 , 1997 .
[19] A. I. MathematicaVolumen,et al. Negatively Curved Groups Have the Convergence Property I , 1995 .