A simple heuristic for reducing the number of scenarios in two-stage stochastic programming

In this work we address the problem of solving multiscenario optimization models that are deterministic equivalents of two-stage stochastic programs. We present a heuristic approximation strategy where we reduce the number of scenarios and obtain an approximation of the original multiscenario optimization problem. In this strategy, a subset of the given set of scenarios is selected based on a proposed criterion, and probabilities are assigned to the occurrence of scenarios in the reduced set. The original stochastic programming model is converted into a deterministic equivalent using the reduced set of scenarios. A mixed-integer linear program (MILP) is proposed for the reduced scenario selection. We apply this practical heuristic strategy to four numerical examples and show that reformulating and solving the stochastic program with the reduced set of scenarios yields an objective value close to the optimum of the original multiscenario problem.

[1]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[2]  Efstratios N. Pistikopoulos,et al.  Stochastic optimization based algorithms for process synthesis under uncertainty , 1998 .

[3]  Lorenz T. Biegler,et al.  Optimal process design with model parameter uncertainty and process variability , 2003 .

[4]  Rüdiger Schultz,et al.  A Stochastic Integer Programming Model for Incorporating Day-Ahead Trading of Electricity into Hydro-Thermal Unit Commitment , 2005 .

[5]  N. Sahinidis,et al.  Optimization in Process Planning under Uncertainty , 1996 .

[6]  René Henrion,et al.  Metric regularity and quantitative stability in stochastic programs with probabilistic constraints , 1999, Math. Program..

[7]  Zdravko Kravanja,et al.  Mixed-Integer Nonlinear Programming Problem Process Synthesis under Uncertainty by Reduced Dimensional Stochastic Optimization , 1999 .

[8]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[9]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[10]  Diana Barro,et al.  Dynamic portfolio optimization: Time decomposition using the Maximum Principle with a scenario approach , 2005, Eur. J. Oper. Res..

[11]  Svetlozar T. Rachev,et al.  Quantitative Stability in Stochastic Programming: The Method of Probability Metrics , 2002, Math. Oper. Res..

[12]  J. Dupacová,et al.  Scenario reduction in stochastic programming: An approach using probability metrics , 2000 .

[13]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[14]  Jing Wei,et al.  Sample average approximation methods for stochastic MINLPs , 2004, Comput. Chem. Eng..

[15]  Werner Römisch,et al.  Scenario Reduction Algorithms in Stochastic Programming , 2003, Comput. Optim. Appl..

[16]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[17]  David A. Kendrick,et al.  GAMS : a user's guide, Release 2.25 , 1992 .

[18]  John R. Birge,et al.  Stochastic programming approaches to stochastic scheduling , 1996, J. Glob. Optim..

[19]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[20]  Jitka Dupacová,et al.  Scenario reduction in stochastic programming , 2003, Math. Program..

[21]  Leen Stougie,et al.  An algorithm for the construction of convex hulls in simple integer recourse programming , 1996, Ann. Oper. Res..

[22]  Nikolaos V. Sahinidis,et al.  A finite branch-and-bound algorithm for two-stage stochastic integer programs , 2004, Math. Program..

[23]  Michal Kaut,et al.  A Heuristic for Moment-Matching Scenario Generation , 2003, Comput. Optim. Appl..

[24]  Claus C. Carøe,et al.  A cutting-plane approach to mixed 0-1 stochastic integer programs , 1997 .

[25]  Georg Ch. Pflug,et al.  A branch and bound method for stochastic global optimization , 1998, Math. Program..

[26]  Leen Stougie,et al.  On the convex hull of the simple integer recourse objective function , 1995, Ann. Oper. Res..

[27]  Informationstechnik Berlin,et al.  Dual Decomposition in Stochastic Integer Programming , 1996 .

[28]  John R. Birge,et al.  A stochastic model for the unit commitment problem , 1996 .

[29]  Ignacio E. Grossmann,et al.  Optimization strategies for flexible chemical processes , 1983 .

[30]  Alberto Luceño,et al.  Discrete approximations to continuous univariate distributions—an alternative to simulation , 1999 .

[31]  Eswaran Subrahmanian,et al.  Design and planning under uncertainty: issues on problem formulation and solution , 2003, Comput. Chem. Eng..

[32]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[33]  I. Grossmann,et al.  A novel branch and bound algorithm for scheduling flowshop plants with uncertain processing times , 2002 .

[34]  I. Grossmann,et al.  A disaggregation algorithm for the optimization of stochastic planning models , 1997 .