Three-Dimensional Super-Resolution Imaging Using a Row–Column Array

A 3-D super-resolution (SR) pipeline based on data from a row–column (RC) array is presented. The 3-MHz RC array contains 62 rows and 62 columns with a half wavelength pitch. A synthetic aperture (SA) pulse inversion sequence with 32 positive and 32 negative row emissions is used for acquiring volumetric data using the SARUS research ultrasound scanner. Data received on the 62 columns are beamformed on a GPU for a maximum volume rate of 156 Hz when the pulse repetition frequency is 10 kHz. Simulated and 3-D printed point and flow microphantoms are used for investigating the approach. The flow microphantom contains a 100-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> radius tube injected with the contrast agent SonoVue. The 3-D processing pipeline uses the volumetric envelope data to find the bubble’s positions from their interpolated maximum signal and yields a high resolution in all three coordinates. For the point microphantom, the standard deviation on the position is (20.7, 19.8, 9.1) <inline-formula> <tex-math notation="LaTeX">${\mu }\text{m}~(x,y,z)$ </tex-math></inline-formula>. The precision estimated for the flow phantom is below <inline-formula> <tex-math notation="LaTeX">$23~\mu \text{m}$ </tex-math></inline-formula> in all three coordinates, making it possible to locate structures on the order of a capillary in all three dimensions. The RC imaging sequence’s point spread function has a size of 0.58 <inline-formula> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> 1.05 <inline-formula> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> 0.31 mm<sup>3</sup> (<inline-formula> <tex-math notation="LaTeX">$1.17\lambda \times 2.12\lambda \times 0.63\lambda $ </tex-math></inline-formula>), so the possible volume resolution is 28900 times smaller than for SA RC B-mode imaging.

[1]  Yonina C. Eldar,et al.  SUSHI: Sparsity-Based Ultrasound Super-Resolution Hemodynamic Imaging , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[2]  M. Tanter,et al.  Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging , 2015, Nature.

[3]  J.A. Jensen,et al.  Ultrasound research scanner for real-time synthetic aperture data acquisition , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[4]  Jørgen Arendt Jensen,et al.  Imaging Performance for Two Row–Column Arrays , 2019, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[5]  J.T. Yen,et al.  A dual-layer transducer array for 3-D rectilinear imaging , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[6]  Jørgen Arendt Jensen,et al.  Probe development of CMUT and PZT row–column-addressed 2-D arrays , 2018 .

[7]  G. Schmitz,et al.  Imaging tumor vascularity by tracing single microbubbles , 2011, 2011 IEEE International Ultrasonics Symposium.

[8]  J. Jensen,et al.  2-D tissue motion compensation of synthetic transmit aperture images , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[9]  Jørgen Arendt Jensen,et al.  Curvilinear 3-D Imaging Using Row–Column-Addressed 2-D Arrays With a Diverging Lens: Phantom Study , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[10]  Jesse T. Yen Beamforming of sound from two-dimensional arrays using spatial matched filters. , 2013, The Journal of the Acoustical Society of America.

[11]  K. Wall,et al.  Real-time volume imaging using a crossed electrode array , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[12]  Charles Tremblay-Darveau,et al.  Visualizing the Tumor Microvasculature With a Nonlinear Plane-Wave Doppler Imaging Scheme Based on Amplitude Modulation , 2016, IEEE Transactions on Medical Imaging.

[13]  Jørgen Arendt Jensen,et al.  3-D imaging using row–column-addressed arrays with integrated apodization— part ii: transducer fabrication and experimental results , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[14]  Jørgen Arendt Jensen,et al.  3-D imaging using row-column-addressed arrays with integrated apodization - part i: apodization design and line element beamforming , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[15]  Piero Tortoli,et al.  Ultrasound Open Platforms for Next-Generation Imaging Technique Development , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[16]  Piero Tortoli,et al.  Introduction to the Special Issue on Novel Equipment for Ultrasound Research , 2006 .

[17]  Roger Zemp,et al.  Top-orthogonal-to-bottom-electrode (TOBE) CMUT arrays for 3-D ultrasound imaging , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[18]  C. Dunsby,et al.  3D Super-Resolution US Imaging of Rabbit Lymph Node Vasculature in Vivo by Using Microbubbles. , 2019, Radiology.

[19]  Piero Tortoli,et al.  ULA-OP 256: A 256-Channel Open Scanner for Development and Real-Time Implementation of New Ultrasound Methods , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[20]  C. Dunsby,et al.  3-D In Vitro Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[21]  Jørgen Arendt Jensen,et al.  Row-column beamforming with dynamic apodizations on a GPU , 2019, Medical Imaging.

[22]  G. Trahey,et al.  Angle Independent Ultrasonic Detection of Blood Flow , 1987, IEEE Transactions on Biomedical Engineering.

[23]  Kristoffer Lindskov Hansen,et al.  Super-Resolution Ultrasound Imaging of Rat Kidneys before and after Ischemia-Reperfusion , 2019, 2019 IEEE International Ultrasonics Symposium (IUS).

[24]  Mickael Tanter,et al.  Ultrasound Localization Microscopy and Super-Resolution: A State of the Art , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[25]  Paul A. Dayton,et al.  3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution Beyond the Diffraction Limit of Conventional Ultrasound , 2017, Theranostics.

[26]  J. Jensen,et al.  In-vivo synthetic aperture flow imaging in medical ultrasound , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[27]  Herve Liebgott,et al.  Fast Volumetric Ultrasound B-Mode and Doppler Imaging with a New High-Channels Density Platform for Advanced 4D Cardiac Imaging/Therapy , 2018 .

[28]  Jørgen Arendt Jensen,et al.  Optimization of synthetic aperture image quality , 2016, SPIE Medical Imaging.

[29]  Jorgen Arendt Jensen,et al.  A multi-threaded version of Field II , 2014, 2014 IEEE International Ultrasonics Symposium.

[30]  S. I. Nikolov,et al.  SARUS: A synthetic aperture real-time ultrasound system , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[31]  K. Boone,et al.  Effect of skin impedance on image quality and variability in electrical impedance tomography: a model study , 1996, Medical and Biological Engineering and Computing.

[32]  Robert J. Eckersley,et al.  In Vivo Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles , 2015, IEEE Transactions on Medical Imaging.

[33]  R. Eckersley,et al.  Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power. , 2005, Ultrasound in medicine & biology.

[34]  J. Arendt Paper presented at the 10th Nordic-Baltic Conference on Biomedical Imaging: Field: A Program for Simulating Ultrasound Systems , 1996 .

[35]  E. Thomsen,et al.  Design of a Novel Zig-Zag 192+192 Row Column Addressed Array Transducer: A Simulation Study , 2018, 2018 IEEE International Ultrasonics Symposium (IUS).

[36]  Evangelos Kanoulas,et al.  Super-Resolution Contrast-Enhanced Ultrasound Methodology for the Identification of In Vivo Vascular Dynamics in 2D , 2019, Investigative radiology.

[37]  Meaghan A. O'Reilly,et al.  A super-resolution ultrasound method for brain vascular mapping. , 2013, Medical physics.

[38]  Paul Aljabar,et al.  Microbubble Axial Localization Errors in Ultrasound Super-Resolution Imaging , 2017, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[39]  G.R. Lockwood,et al.  Theoretical assessment of a crossed electrode 2-D array for 3-D imaging , 2003, IEEE Symposium on Ultrasonics, 2003.

[40]  C. Dunsby,et al.  3-D Super-Resolution Ultrasound (SR-US) Imaging with a 2-D Sparse Array , 2019 .

[41]  J. Jensen,et al.  Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[42]  Yonina C. Eldar,et al.  Exploiting Flow Dynamics for Superresolution in Contrast-Enhanced Ultrasound , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[43]  C Dunsby,et al.  Acoustic super-resolution with ultrasound and microbubbles , 2013, Physics in medicine and biology.

[44]  M. Fink,et al.  Microbubble ultrasound super-localization imaging (MUSLI) , 2011, 2011 IEEE International Ultrasonics Symposium.

[45]  R M Lang,et al.  Combined Assessment of Myocardial Perfusion and Regional Left Ventricular Function by Analysis of Contrast-Enhanced Power Modulation Images , 2001, Circulation.

[46]  Matthieu Toulemonde,et al.  3-D Super-Resolution Ultrasound Imaging With a 2-D Sparse Array , 2020, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[47]  Erik Vilain Thomsen,et al.  3D Printed Flow Phantoms with Fiducial Markers for Super-Resolution Ultrasound Imaging , 2018, 2018 IEEE International Ultrasonics Symposium (IUS).

[48]  Kristoffer Lindskov Hansen,et al.  History and Latest Advances in Flow Estimation Technology: From 1-D in 2-D to 3-D in 4-D , 2019, 2019 IEEE International Ultrasonics Symposium (IUS).