Lattice Boltzmann Methods for Reactive and Other Flows

The lattice Boltzmann method (LBM) is receiving increasing attention in recent years as an alternative approach for computational fluid dynamics. Through its kinetic theory origin, the method inherits the physically appealing particle picture that can be adapted to simulate multiscale and multiphysics systems with sizes ranging from the microscale (where the continuum hypothesis may break down) to macroscale applications. The method is characterized by its straightforward implementation in complex geometries and the fact that it involves only nearest neighbor interactions without global operations, making LBM algorithms ideally suited for parallelization. However, the method in general employs a larger number of degrees of freedom per grid point than classical CFD approaches, and parallel implementation may be essential in order to meet the higher memory requirements. In this chapter, an overview of the method and its applications is presented focusing on recent model developments for the description of the averaged macroscopic behavior of isothermal and non-isothermal, single- and multi-component and reactive flows.

[1]  I. Karlin,et al.  Lattice Boltzmann model for the simulation of multicomponent mixtures. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Konstantinos Boulouchos,et al.  Lattice Boltzmann Method For Simulation Of Weakly Compressible Flows At Arbitrary Prandtl Number , 2007 .

[3]  Santosh Ansumali,et al.  Consistent lattice Boltzmann method. , 2005, Physical review letters.

[4]  K. Boulouchos,et al.  Simulation of binary mixtures with the lattice Boltzman method. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Sharath S. Girimaji,et al.  LES of turbulent square jet flow using an MRT lattice Boltzmann model , 2006 .

[6]  J. Jiménez,et al.  Boltzmann Approach to Lattice Gas Simulations , 1989 .

[7]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[8]  Alexander N Gorban,et al.  Maximum Entropy Principle for Lattice Kinetic Equations , 1998 .

[9]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[10]  F. Durst,et al.  Lattice BGK direct numerical simulation of fully developed turbulence in incompressible plane channel flow , 2006 .

[11]  D. Hänel,et al.  Lattice-BGK Model for Low Mach Number Combustion , 1998 .

[12]  P. Español,et al.  FLUID PARTICLE MODEL , 1998 .

[13]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[14]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[15]  Method of invariant grid for model reduction of hydrogen combustion , 2007, 0712.2386.

[16]  D. d'Humières,et al.  Multiple–relaxation–time lattice Boltzmann models in three dimensions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  Shiyi Chen,et al.  A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit , 1998 .

[18]  P. Coveney,et al.  Entropic lattice Boltzmann methods , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  Zhu He,et al.  A novel coupled lattice Boltzmann model for low Mach number combustion simulation , 2007, Appl. Math. Comput..

[20]  O. Filippova,et al.  A Novel Lattice BGK Approach for Low Mach Number Combustion , 2000 .

[21]  Santosh Ansumali,et al.  Minimal kinetic modeling of hydrodynamics , 2004 .

[22]  M. J. Pattison,et al.  Dynamic subgrid scale modeling of turbulent flows using lattice-Boltzmann method , 2009, 0901.0593.

[23]  Xiaowen Shan,et al.  SIMULATION OF RAYLEIGH-BENARD CONVECTION USING A LATTICE BOLTZMANN METHOD , 1997 .

[24]  Sauro Succi,et al.  Kinetic theory of turbulence modeling: smallness parameter, scaling and microscopic derivation of Smagorinsky model , 2004 .

[25]  T. Abe Derivation of the Lattice Boltzmann Method by Means of the Discrete Ordinate Method for the Boltzmann Equation , 1997 .

[26]  Pietro Asinari,et al.  A consistent lattice Boltzmann equation with baroclinic coupling for mixtures , 2008, J. Comput. Phys..

[27]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[28]  I. Karlin,et al.  Lattice Boltzmann method for simulation of compressible flows on standard lattices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[30]  I. Karlin,et al.  Lattices for the lattice Boltzmann method. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Iliya V. Karlin,et al.  Method of invariant manifold for chemical kinetics , 2003 .

[32]  B. Alder,et al.  Analysis of the lattice Boltzmann treatment of hydrodynamics , 1993 .

[33]  C. Teixeira INCORPORATING TURBULENCE MODELS INTO THE LATTICE-BOLTZMANN METHOD , 1998 .

[34]  I. Karlin,et al.  Grad's approximation for missing data in lattice Boltzmann simulations , 2006 .

[35]  D. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction , 2000 .

[36]  André Bardow,et al.  General characteristic-based algorithm for off-lattice Boltzmann simulations , 2006 .

[37]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[38]  Konstantinos Boulouchos,et al.  Combustion simulation via lattice Boltzmann and reduced chemical kinetics , 2009 .

[39]  S. Chen,et al.  Comparison of spectral method and lattice Boltzmann simulations of two‐dimensional hydrodynamics , 1993, comp-gas/9303003.

[40]  Pietro Asinari,et al.  Viscous coupling based lattice Boltzmann model for binary mixtures , 2005 .

[41]  X. Yuan,et al.  Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation , 2006, Journal of Fluid Mechanics.

[42]  Sauro Succi,et al.  Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions , 2004 .

[43]  N. I. Prasianakis,et al.  Quasi-equilibrium lattice Boltzmann method , 2005 .

[44]  S. Ansumali,et al.  Entropic lattice Boltzmann method for microflows , 2006 .

[45]  H. Grad On the kinetic theory of rarefied gases , 1949 .

[46]  Victor Sofonea,et al.  Boundary conditions for the upwind finite difference Lattice Boltzmann model: Evidence of slip velocity in micro-channel flow , 2005 .

[47]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[48]  S. Ansumali,et al.  Hydrodynamics beyond Navier-Stokes: exact solution to the lattice Boltzmann hierarchy. , 2007, Physical review letters.

[49]  A. Gorban,et al.  Invariant Manifolds for Physical and Chemical Kinetics , 2005 .

[50]  Ananias G. Tomboulides,et al.  A Quasi-Two-Dimensional Benchmark Problem for Low Mach Number Compressible Codes , 1998 .

[51]  I. Karlin,et al.  Kinetic boundary conditions in the lattice Boltzmann method. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[53]  Sauro Succi,et al.  Lattice Kinetic Theory for Numerical Combustion , 1996, comp-gas/9609003.

[54]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[55]  K. Boulouchos,et al.  Lattice Boltzmann method with restored Galilean invariance. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Heinz Pitsch,et al.  Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers , 2007, J. Comput. Phys..

[57]  I. Karlin,et al.  Entropic lattice Boltzmann models for hydrodynamics in three dimensions. , 2006, Physical review letters.

[58]  Shiyi Chen,et al.  Stability Analysis of Lattice Boltzmann Methods , 1993, comp-gas/9306001.

[59]  Shiyi Chen,et al.  Lattice Boltzmann computational fluid dynamics in three dimensions , 1992 .

[60]  Manfred Krafczyk,et al.  LARGE-EDDY SIMULATIONS WITH A MULTIPLE-RELAXATION-TIME LBE MODEL , 2003 .

[61]  Pierre Lallemand,et al.  Consistent initial conditions for lattice Boltzmann simulations , 2006 .

[62]  I. Karlin,et al.  Lattice Boltzmann simulation of catalytic reactions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Sauro Succi,et al.  A note on the Lattice Boltzmann Method Beyond the Chapman Enskog Limits , 2005 .

[64]  S. Orszag,et al.  Extended Boltzmann Kinetic Equation for Turbulent Flows , 2003, Science.

[65]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[66]  Generalized lattice‐BGK concept for thermal and chemically reacting flows at low Mach numbers , 2006 .

[67]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[68]  X. He,et al.  Discretization of the Velocity Space in the Solution of the Boltzmann Equation , 1997, comp-gas/9712001.

[69]  P. Lallemand,et al.  Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  O. Filippova,et al.  Grid Refinement for Lattice-BGK Models , 1998 .

[71]  S. Menon,et al.  Simulation of vortex dynamics in three-dimensional synthetic and free jets using the large-eddy lattice Boltzmann method , 2004 .

[72]  Konstantinos Boulouchos,et al.  Lattice Boltzmann method for direct numerical simulation of turbulent flows , 2010, Journal of Fluid Mechanics.

[73]  B. Shi,et al.  An extrapolation method for boundary conditions in lattice Boltzmann method , 2002 .

[74]  Anna Walsh STUDIES IN MOLECULAR DYNAMICS , 1965 .

[75]  Michael C. Sukop,et al.  Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers , 2005 .

[76]  Sauro Succi,et al.  Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis. , 2002, Physical review letters.

[77]  G. Özkan,et al.  Turbulent structure of three-dimensional flow behind a model car: 1. Exposed to uniform approach flow , 2004 .

[78]  Eliodoro Chiavazzo,et al.  Invariant manifolds and lattice Boltzmann method for combustion , 2009 .

[79]  Hudong Chen,et al.  A GENERAL MULTIPLE-RELAXATION-TIME BOLTZMANN COLLISION MODEL , 2007 .

[80]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[81]  P. Philippi,et al.  From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  Iliya V. Karlin,et al.  Elements of the lattice Boltzmann method I: Linear advection equation , 2006 .

[83]  Lattice Boltzmann Simulation of Reactive Microflows over Catalytic Surfaces , 2002 .

[84]  H. C. Ottinger,et al.  Minimal entropic kinetic models for hydrodynamics , 2002, cond-mat/0205510.

[85]  Andrew E. Lutz,et al.  OPPDIF: A Fortran program for computing opposed-flow diffusion flames , 1997 .

[86]  Iliya V. Karlin,et al.  Perfect entropy functions of the Lattice Boltzmann method , 1999 .

[87]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[88]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[89]  Lyazid Djenidi Lattice-Boltzmann simulation of grid-generated turbulence , 2006, Journal of Fluid Mechanics.

[90]  Kazuhiro Yamamoto,et al.  Simulation of Combustion Field with Lattice Boltzmann Method , 2002 .

[91]  I. Karlin,et al.  Lattice Boltzmann method for thermal flow simulation on standard lattices. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.