Piecewise Affine Registration of Biological Images

his manuscript tackles the registration of 2D biological images (histological sections or autoradiographs) to 2D images from the same or different modalities (e.g., histology or MRI). The process of acquiring these images typically induces composite transformations that can be modeled as a number of rigid or affine local transformations embedded in an elastic one. We propose a registration approach closely derived from this model. Given a pair of input images, we first compute a dense similarity field between them with a block matching algorithm. A hierarchical clustering algorithm then automatically partitions this field into a number of classes from which we extract independent pairs of sub-images. Finally, the pairs of sub-images are, independently, affinely registered and a hybrid affine/non-linear interpolation scheme is used to compose the output registered image. We investigate the behavior of our approach under a variety of conditions, and discuss examples using real biomedical images, including MRI, histology and cryosection data.

[1]  David J. Hawkes,et al.  Deformations Incorporating Rigid Structures , 1996, Comput. Vis. Image Underst..

[2]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.

[3]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[4]  R. Bajcsy,et al.  Elastically Deforming 3D Atlas to Match Anatomical Brain Images , 1993, Journal of computer assisted tomography.

[5]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[7]  Joachim Dengler,et al.  Estimation of discontinuous displacement vector fields with the minimum description length criterion , 1990, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[9]  Gary E. Christensen,et al.  Consistent Linear-Elastic Transformations for Image Matching , 1999, IPMI.

[10]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[11]  Sébastien Ourselin,et al.  Reconstructing a 3D structure from serial histological sections , 2001, Image Vis. Comput..

[12]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[13]  Christos Davatzikos,et al.  Spatial Transformation and Registration of Brain Images Using Elastically Deformable Models , 1997, Comput. Vis. Image Underst..

[14]  Boštjan Likar,et al.  Registration of serial transverse sections of muscle fibers. , 1999 .

[15]  Jürgen Weese,et al.  A comparison of similarity measures for use in 2-D-3-D medical image registration , 1998, IEEE Transactions on Medical Imaging.

[16]  Jürgen Weese,et al.  A Comparison of Simularity Measures for use in 2D-3D Medical Image Registration , 1998, MICCAI.

[17]  E. Backer,et al.  Computer-assisted reasoning in cluster analysis , 1995 .

[18]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[19]  D. Hill,et al.  Medical image registration , 2001, Physics in medicine and biology.

[20]  D. Louis Collins,et al.  Use of Registration for Cohort Studies , 2001 .

[21]  Nicholas Ayache,et al.  Unifying maximum likelihood approaches in medical image registration , 2000 .

[22]  J. Mazziotta,et al.  Automated image registration , 1993 .

[23]  Steven Haker,et al.  Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..