The number of infinite clusters in dynamical percolation
暂无分享,去创建一个
[1] R. Getoor,et al. Naturality, standardness, and weak duality for Markov processes , 1984 .
[2] R. Burton,et al. Density and uniqueness in percolation , 1989 .
[3] Y. Peres. Intersection-equivalence of Brownian paths and certain branching processes , 1996 .
[4] Uniqueness in percolation theory , 1994 .
[5] Noga Alon,et al. The 123 Theorem and Its Extensions , 1995, J. Comb. Theory, Ser. A.
[6] J. Kahane. Some Random Series of Functions , 1985 .
[7] Robin Pemantle,et al. Galton-Watson Trees with the Same Mean Have the Same Polar Sets , 1995, math/0404053.
[8] H. Kesten,et al. Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation , 1987 .
[9] Thomas S. Salisbury,et al. Capacity and energy for multiparameter Markov processes , 1989 .
[10] R. Lyons. Random Walks and Percolation on Trees , 1990 .
[11] The trace of spatial brownian motion is capacity-equivalent to the unit square , 1996, math/0404088.
[12] K. Alexander. Simultaneous uniqueness of infinite clusters in stationary random labeled graphs , 1995 .
[13] Y. Peres. Remarks on intersection-equivalence and capacity-equivalence , 1996 .
[14] I. Benjamini,et al. Exceptional planes of percolation , 1998 .
[15] M. Fukushima. Dirichlet forms and Markov processes , 1980 .
[16] Russell Lyons,et al. Random Walks, Capacity and Percolation on Trees , 1992 .