Numerical and experimental study of a corrugated thermal collector

Abstract The present work proposes a design for solar thermal collectors and also a numerical simulation analysis procedure to evaluate the collector performance. The performance of this collector is compared with the performance of other two commercial ones by observing both the numerical modeling study and experimental test results. Benefits of using the corrugated parallel approach, in terms of yield, are shown applying a new alternative approach of numerical modeling. A better performance is observed for the corrugated parallel collector, which provides a higher yield using an energy-absorbing surface. Moreover, the proposed numerical methodology could be used to evaluate the performance of other thermal collector configurations.

[1]  N. Molero Villar,et al.  Numerical 3-D heat flux simulations on flat plate solar collectors , 2009 .

[2]  Hua Wang,et al.  Exergy Analysis of Flat Plate Solar Collectors , 2014, Entropy.

[3]  J. Cadafalch,et al.  A detailed numerical model for flat-plate solar thermal devices , 2009 .

[4]  Horst-Michael Prasser,et al.  Correction for the absorber edge effect in analytical models of flat plate solar collectors , 2013 .

[5]  John Currie,et al.  Experimental and CFD investigation of an ICSSWH at various inclinations , 2007 .

[6]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[7]  Klaus Vajen,et al.  On the correlations between collector efficiency factor and material content of parallel flow flat-plate solar collectors , 2004 .

[8]  K. Ng,et al.  Numerical and experimental investigations on the heat transfer enhancement in corrugated channels using SiO2–water nanofluid , 2015 .

[9]  Angelika Bayer,et al.  Solar Engineering Of Thermal Processes , 2016 .

[10]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[11]  S. Kalogirou Solar Energy Engineering: Processes and Systems , 2009 .

[12]  B. Efron Better Bootstrap Confidence Intervals , 1987 .

[13]  Oscar Cabeza,et al.  Experimental and numerical investigation of a flat-plate solar collector , 2010 .

[14]  Shuli Liu,et al.  Numerical study on thermal behaviors of a solar chimney incorporated with PCM , 2014 .

[15]  Marwa M. Hassan,et al.  Modeling of an integrated solar system , 2008 .

[16]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[17]  Richárd Kicsiny Simplified multiple linear regression based model for solar collectors , 2014 .

[18]  Wei Zhang,et al.  Modeling of fluid flow and heat transfer in a trough solar collector , 2013 .

[19]  S. Wood Generalized Additive Models: An Introduction with R , 2006 .

[20]  Kenya Standard,et al.  Thermal solar systems and components — Solar collectors — Part 2: Test methods , 2008 .

[21]  H. Hottel,et al.  The Performance of Flat-Plate Solar Heat Collectors , 1942, Renewable Energy.

[22]  J. Buzás,et al.  Transfer functions of solar collectors for dynamical analysis and control design , 2014 .

[23]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[24]  J Glembin,et al.  NUMERICAL 3-D HEAT FLUX SIMULATIONS ON FLAT PLATE SOLAR COLLECTORS , 2009 .

[25]  A. Chapman Fundamentals of heat transfer , 1987 .

[26]  Hein Putter,et al.  The bootstrap: a tutorial , 2000 .

[27]  Jim Euchner Design , 2014, Catalysis from A to Z.

[28]  A. Galecki JULIAN J. FARAWAY. Extending the Linear Model with R: Generalized Linear, Mixed Effects, and Nonparametric Regression Models, 2nd edition. Boca Raton: CRC Press , 2017 .

[29]  Yvan J. Beliveau,et al.  Design, construction and performance prediction of integrated solar roof collectors using finite element analysis , 2007 .

[30]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[31]  K. Touafek,et al.  Design and modeling of a photovoltaic thermal collector for domestic air heating and electricity production , 2013 .