Lipschitzianity of optimal trajectories for the Bolza optimal control problem

In this paper we investigate Lipschitz continuity of optimal solutions for the Bolza optimal control problem under Tonelli’s type growth condition. Such regularity being a consequence of normal necessary conditions for optimality, we propose new sufficient conditions for normality of state-constrained nonsmooth maximum principles for absolutely continuous optimal trajectories. Furthermore we show that for unconstrained problems any minimizing sequence of controls can be slightly modified to get a new minimizing sequence with nice boundedness properties. Finally, we provide a sufficient condition for Lipschitzianity of optimal trajectories for Bolza optimal control problems with end point constraints and extend a result from (J. Math. Anal. Appl. 143, 301–316, 1989) on Lipschitzianity of minimizers for a classical problem of the calculus of variations with discontinuous Lagrangian to the nonautonomous case.

[1]  Richard B. Vinter,et al.  Lipschitz Continuity of Optimal Controls for State Constrained Problems , 2003, SIAM J. Control. Optim..

[2]  Gianni Dal Maso,et al.  Autonomous Integral Functionals with Discontinuous Nonconvex Integrands: Lipschitz Regularity of Minimizers, DuBois—Reymond Necessary Conditions, and Hamilton—Jacobi Equations , 2002 .

[3]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[4]  Delfim F. M. Torres Lipschitzian Regularity of the Minimizing Trajectories for Nonlinear Optimal Control Problems , 2003, Math. Control. Signals Syst..

[5]  Arrigo Cellina,et al.  Reparametrizations and approximate values of integrals of the calculus of variations , 2003 .

[6]  A. Cellina,et al.  Existence of Lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case , 2003 .

[7]  Delfim F. M. Torres,et al.  Lipschitzian Regularity of Minimizers for Optimal Control Problems with Control-Affine Dynamics , 2000 .

[8]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[9]  R. Vinter The equivalence of “strong calmness” and “calmness” in optimal control theory , 1983 .

[10]  Arrigo Cellina,et al.  The classical problem of the calculus of variations in the autonomous case: Relaxation and Lipschitzianity of solutions , 2003 .

[11]  F. Clarke The Generalized Problem of Bolza , 1976 .

[12]  M. Lavrentieff,et al.  Sur quelques problèmes du calcul des variations , 1927 .

[13]  Giuseppe Buttazzo,et al.  Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands , 1989 .

[14]  On the Larentiev Phenomenon for Optimal Control Problems with Second-Order Dynamics , 1996 .

[15]  Donald E. Kirk,et al.  Optimal Control Theory , 1970 .

[16]  Richard B. Vinter,et al.  Regularity properties of solutions to the basic problem in the calculus of variations , 1985 .

[17]  J. Serrin,et al.  A General Chain Rule for Derivatives and the Change of Variables Formula for the Lebesgue Integral , 1969 .

[18]  Richard B. Vinter,et al.  Regularity properties of optimal controls , 1990 .

[19]  Richard B. Vinter,et al.  Optimal Control , 2000 .

[20]  Richard B. Vinter,et al.  Degenerate Optimal Control Problems with State Constraints , 2000, SIAM J. Control. Optim..