NFTsim: Theory and Simulation of Multiscale Neural Field Dynamics

A user ready, portable, documented software package, NFTsim, is presented to facilitate numerical simulations of a wide range of brain systems using continuum neural field modeling. NFTsim enables users to simulate key aspects of brain activity at multiple scales. At the microscopic scale, it incorporates characteristics of local interactions between cells, neurotransmitter effects, synaptodendritic delays and feedbacks. At the mesoscopic scale, it incorporates information about medium to large scale axonal ranges of fibers, which are essential to model dissipative wave transmission and to produce synchronous oscillations and associated cross-correlation patterns as observed in local field potential recordings of active tissue. At the scale of the whole brain, NFTsim allows for the inclusion of long range pathways, such as thalamocortical projections, when generating macroscopic activity fields. The multiscale nature of the neural activity produced by NFTsim has the potential to enable the modeling of resulting quantities measurable via various neuroimaging techniques. In this work, we give a comprehensive description of the design and implementation of the software. Due to its modularity and flexibility, NFTsim enables the systematic study of an unlimited number of neural systems with multiple neural populations under a unified framework and allows for direct comparison with analytic and experimental predictions. The code is written in C++ and bundled with Matlab routines for a rapid quantitative analysis and visualization of the outputs. The output of NFTsim is stored in plain text file enabling users to select from a broad range of tools for offline analysis. This software enables a wide and convenient use of powerful physiologically-based neural field approaches to brain modeling. NFTsim is distributed under the Apache 2.0 license.

[1]  R. Courant,et al.  On the Partial Difference Equations, of Mathematical Physics , 2015 .

[2]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[3]  P. Nunez Wavelike Properties of the Alpha Rhythm , 1974 .

[4]  M. Breakspear Dynamic models of large-scale brain activity , 2017, Nature Neuroscience.

[5]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[6]  P A Robinson,et al.  Neural field theory of synaptic plasticity. , 2011, Journal of theoretical biology.

[7]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[8]  H. Haken,et al.  Field Theory of Electromagnetic Brain Activity. , 1996, Physical review letters.

[9]  M. Hämäläinen Magnetoencephalography: A tool for functional brain imaging , 2005, Brain Topography.

[10]  P. Nunez,et al.  Spatial filtering and neocortical dynamics: estimates of EEG coherence , 1998, IEEE Transactions on Biomedical Engineering.

[11]  James J. Wright,et al.  Effects of local feedback on dispersion of electrical waves in the cerebral cortex , 1999 .

[12]  Viktor K. Jirsa,et al.  Systematic approximations of neural fields through networks of neural masses in the virtual brain , 2013, NeuroImage.

[13]  Romain Brette,et al.  Brian: A Simulator for Spiking Neural Networks in Python , 2008, Frontiers Neuroinformatics.

[14]  P. Robinson,et al.  Prediction and verification of nonlinear sleep spindle harmonic oscillations. , 2014, Journal of theoretical biology.

[15]  Edoardo M. Airoldi,et al.  Post-transcriptional regulation across human tissues , 2015, bioRxiv.

[16]  P. Robinson,et al.  Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  P A Robinson,et al.  Spatiotemporal BOLD dynamics from a poroelastic hemodynamic model. , 2010, Journal of theoretical biology.

[18]  R. Whitehouse,et al.  Nonuniform corticothalamic continuum model of electroencephalographic spectra with application to split-alpha peaks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Vince D. Calhoun,et al.  SimTB, a simulation toolbox for fMRI data under a model of spatiotemporal separability , 2012, NeuroImage.

[20]  D. Liley,et al.  Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Peter A. Robinson,et al.  Firing responses of bursting neurons with delayed feedback , 2010, Journal of Computational Neuroscience.

[22]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[23]  Steven J Schiff,et al.  Dynamical evolution of spatiotemporal patterns in mammalian middle cortex , 2007, BMC Neuroscience.

[24]  Sacha Jennifer van Albada,et al.  Unified neural field theory of brain dynamics underlying oscillations in Parkinson's disease and generalized epilepsies. , 2017, Journal of theoretical biology.

[25]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[26]  P A Robinson,et al.  Neural field theory of calcium dependent plasticity with applications to transcranial magnetic stimulation. , 2013, Journal of theoretical biology.

[27]  P. Robinson,et al.  Experimental observation of a theoretically predicted nonlinear sleep spindle harmonic in human EEG , 2014, Clinical Neurophysiology.

[28]  P. Robinson,et al.  Mean field model of acetylcholine mediated dynamics in the thalamocortical system. , 2008, Journal of theoretical biology.

[29]  P. Robinson,et al.  Model-based analysis and quantification of age trends in auditory evoked potentials , 2011, Clinical Neurophysiology.

[30]  Axel Hutt,et al.  Neural field simulator: two-dimensional spatio-temporal dynamics involving finite transmission speed , 2015, Front. Neuroinform..

[31]  P. A. Robinson,et al.  Spike, rate, field, and hybrid methods for treating neuronal dynamics and interactions , 2012, Journal of Neuroscience Methods.

[32]  Peter N. Robinson,et al.  STEADY STATES AND GLOBAL DYNAMICS OF ELECTRICAL ACTIVITY IN THE CEREBRAL CORTEX , 1998 .

[33]  P. Robinson,et al.  Multiscale brain modelling , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[35]  William W. Lytton,et al.  Cortical information flow in Parkinson's disease: a composite network/field model , 2013, Front. Comput. Neurosci..

[36]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[37]  P. Robinson Propagator theory of brain dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  O. Faugeras,et al.  Stochastic neural field equations: a rigorous footing , 2013, Journal of mathematical biology.

[39]  P. Robinson,et al.  Critical dynamics of Hopf bifurcations in the corticothalamic system: Transitions from normal arousal states to epileptic seizures. , 2017, Physical review. E.

[40]  N. Hatsopoulos,et al.  Propagating waves mediate information transfer in the motor cortex , 2006, Nature Neuroscience.

[41]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[42]  Marc-Oliver Gewaltig,et al.  NEST (NEural Simulation Tool) , 2007, Scholarpedia.

[43]  P A Robinson,et al.  Unifying and interpreting the spectral wavenumber content of EEGs, ECoGs, and ERPs. , 2004, Journal of theoretical biology.

[44]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[45]  P A Robinson,et al.  Estimation of multiscale neurophysiologic parameters by electroencephalographic means , 2004, Human brain mapping.

[46]  M. Markus,et al.  On-off intermittency and intermingledlike basins in a granular medium. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  James M. Bower,et al.  Rallpacks: a set of benchmarks for neuronal simulators , 1992, Trends in Neurosciences.

[48]  Jian-Young Wu,et al.  Compression and Reflection of Visually Evoked Cortical Waves , 2007, Neuron.

[49]  X. Zhao,et al.  Generalized seizures in a neural field model with bursting dynamics , 2015, Journal of Computational Neuroscience.

[50]  Christopher J. Rennie,et al.  Modeling the large-scale electrical activity of the brain , 2001 .

[51]  Donald L Rowe,et al.  Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics. , 2004, Journal of theoretical biology.

[52]  Edward T. Bullmore,et al.  Whole-brain anatomical networks: Does the choice of nodes matter? , 2010, NeuroImage.

[53]  Romain Brette,et al.  Neuroinformatics Original Research Article Brian: a Simulator for Spiking Neural Networks in Python , 2022 .

[54]  Frédéric Chavane,et al.  A biophysical cortical column model to study the multi-component origin of the VSDI signal , 2010, NeuroImage.

[55]  P A Robinson,et al.  Determination of effective brain connectivity from functional connectivity with application to resting state connectivities. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Nicholas T. Carnevale,et al.  Simulation of networks of spiking neurons: A review of tools and strategies , 2006, Journal of Computational Neuroscience.

[57]  Marc-Oliver Gewaltig,et al.  Current Practice in Software Development for Computational Neuroscience and How to Improve It , 2012, PLoS Comput. Biol..

[58]  P A Robinson,et al.  Multistability in the corticothalamic system. , 2017, Journal of theoretical biology.

[59]  R. L. Beurle Properties of a mass of cells capable of regenerating pulses , 1956, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[60]  Frederick C. Harris,et al.  A novel CPU/GPU simulation environment for large-scale biologically realistic neural modeling , 2013, Front. Neuroinform..

[61]  Peter A. Robinson,et al.  Physiology-based modeling of cortical auditory evoked potentials , 2008, Biological Cybernetics.

[62]  Michael L. Hines,et al.  Neuroinformatics Original Research Article Neuron and Python , 2022 .

[63]  James J. Wright,et al.  Propagation and stability of waves of electrical activity in the cerebral cortex , 1997 .

[64]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[65]  John N. J. Reynolds,et al.  Numerical modelling of plasticity induced by transcranial magnetic stimulation , 2014, Journal of Computational Neuroscience.

[66]  P A Robinson,et al.  Neural field theory of nonlinear wave-wave and wave-neuron processes. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  James J. Wright,et al.  Dynamics of the brain at global and microscopic scales: Neural networks and the EEG , 1996, Behavioral and Brain Sciences.

[68]  Zachary P. Kilpatrick,et al.  Wandering Bumps in Stochastic Neural Fields , 2012, SIAM J. Appl. Dyn. Syst..

[69]  Viktor K. Jirsa,et al.  Mathematical framework for large-scale brain network modeling in The Virtual Brain , 2015, NeuroImage.

[70]  Ingo Bojak,et al.  Axonal Velocity Distributions in Neural Field Equations , 2010, PLoS Comput. Biol..

[71]  Amiram Grinvald,et al.  VSDI: a new era in functional imaging of cortical dynamics , 2004, Nature Reviews Neuroscience.

[72]  Peter A. Robinson,et al.  Unified neurophysical model of EEG spectra and evoked potentials , 2002, Biological Cybernetics.

[73]  Peter Ebert,et al.  Ten Simple Rules for Developing Usable Software in Computational Biology , 2017, PLoS Comput. Biol..

[74]  John R. Terry,et al.  A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. , 2006, Cerebral cortex.

[75]  S. Coombes,et al.  Neural Field Models with Threshold Noise , 2016, The Journal of Mathematical Neuroscience.

[76]  Klaus Schuch,et al.  PCSIM: A Parallel Simulation Environment for Neural Circuits Fully Integrated with Python , 2008, Frontiers Neuroinformatics.

[77]  P. Robinson,et al.  Physiologically based arousal state estimation and dynamics , 2015, Journal of Neuroscience Methods.

[78]  P. Nunez,et al.  Neocortical Dynamics and Human EEG Rhythms , 1995 .

[79]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[80]  Romain Brette,et al.  Vectorized Algorithms for Spiking Neural Network Simulation , 2011, Neural Computation.

[81]  S. Amari Homogeneous nets of neuron-like elements , 1975, Biological Cybernetics.

[82]  J. A. Roberts,et al.  Modeling distributed axonal delays in mean-field brain dynamics. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[84]  P. Robinson,et al.  Mechanisms of cortical electrical activity and emergence of gamma rhythm. , 2000, Journal of theoretical biology.

[85]  S. Ogawa,et al.  Magnetic resonance imaging of blood vessels at high fields: In vivo and in vitro measurements and image simulation , 1990, Magnetic resonance in medicine.

[86]  M. Hämäläinen,et al.  Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data , 1989, IEEE Transactions on Biomedical Engineering.

[87]  P. Robinson,et al.  Neural field theory of synaptic metaplasticity with applications to theta burst stimulation. , 2014, Journal of theoretical biology.

[88]  P. Robinson,et al.  Spatially uniform and nonuniform analyses of electroencephalographic dynamics,with application to the topography of the alpha rhythm. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  P A Robinson,et al.  Wave-number spectrum of electroencephalographic signals. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  Sacha Jennifer van Albada,et al.  Neurophysiological changes with age probed by inverse modeling of EEG spectra , 2010, Clinical Neurophysiology.

[91]  Viktor K. Jirsa,et al.  The Virtual Brain: a simulator of primate brain network dynamics , 2013, Front. Neuroinform..

[92]  P A Robinson,et al.  Neural field theory of plasticity in the cerebral cortex. , 2013, Journal of theoretical biology.

[93]  P. Robinson,et al.  Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[95]  Michael Breakspear,et al.  Hemodynamic Traveling Waves in Human Visual Cortex , 2012, PLoS Comput. Biol..

[96]  Paul C. Bressloff,et al.  Front Propagation in Stochastic Neural Fields , 2012, SIAM J. Appl. Dyn. Syst..

[97]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[98]  P. Robinson,et al.  Modeling absence seizure dynamics: implications for basic mechanisms and measurement of thalamocortical and corticothalamic latencies. , 2008, Journal of theoretical biology.

[99]  Peter A. Robinson,et al.  Suppression of Parkinsonian Beta Oscillations by Deep Brain Stimulation: Determination of Effective Protocols , 2018, Front. Comput. Neurosci..

[100]  James Rankin,et al.  Neural field model to reconcile structure with function in primary visual cortex , 2017, PLoS Comput. Biol..

[101]  Peter A. Robinson,et al.  Quantitative theory of driven nonlinear brain dynamics , 2012, NeuroImage.