Photochemistry of forbidden oxygen lines in the inner coma of 67P/Churyumov‐Gerasimenko

Observations of the green and red‐doublet emission lines have previously been realized for several comets. We present here a chemistry‐emission coupled model to study the production and loss mechanisms of the O(1S) and O(1D) states, which are responsible for the emission lines of interest for comet 67P/Churyumov‐Gerasimenko. The recent discovery of O2 in significant abundance relative to water 3.80 ± 0.85% within the coma of 67P has been taken into consideration for the first time in such models. We evaluate the effect of the presence of O2 on the green to red‐doublet emission intensity ratio, which is traditionally used to assess the CO2 abundance within cometary atmospheres. Model simulations, solving the continuity equation with transport, show that not taking O2 into account leads to an underestimation of the CO2 abundance within 67P, with a relative error of about 25%. This strongly suggests that the green to red‐doublet emission intensity ratio alone is not a proper tool for determining the CO2 abundance, as previously suggested. Indeed, there is no compelling reason why O2 would not be a common cometary volatile, making revision of earlier assessments regarding the CO2 abundance in cometary atmospheres necessary. The large uncertainties of the CO2 photodissociation cross section imply that more studies are required in order to better constrain the O(1S) and O(1D) production through this mechanism. Space weather phenomena, such as powerful solar flares, could be used as tools for doing so, providing additional information on a good estimation of the O2 abundance within cometary atmospheres.

[1]  F. Lefévre,et al.  Retrieval of CO2 and N2 in the Martian thermosphere using dayglow observations by IUVS on MAVEN , 2015 .

[2]  Martin Rubin,et al.  Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA , 2015 .

[3]  J. De Keyser,et al.  Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko , 2015, Nature.

[4]  T. Owen,et al.  Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature , 2015, Science.

[5]  W. Huebner,et al.  Photoionization and photodissociation rates in solar and blackbody radiation fields , 2015 .

[6]  E. Neefs,et al.  67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio , 2015, Science.

[7]  E. Kührt,et al.  Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko , 2015, Science.

[8]  Anita L. Cochran,et al.  Evolution of H2O, CO, and CO2 production in Comet C/2009 P1 Garradd during the 2011-2012 apparition , 2014, 1412.7410.

[9]  Véronique Dehant,et al.  What characterizes planetary space weather? , 2014 .

[10]  E. Jehin,et al.  Forbidden oxygen lines at various nucleocentric distances in comets , 2014, 1409.6249.

[11]  A. Rahmati,et al.  The precipitation of keV energetic oxygen ions at Mars and their effects during the comet Siding Spring approach , 2014 .

[12]  A. Bhardwaj,et al.  Photochemistry of atomic oxygen green and red-doublet emissions in comets at larger heliocentric distances , 2014, 1405.0375.

[13]  P. Drossart,et al.  JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system , 2013 .

[14]  Jeffrey Paul Morgenthaler,et al.  Observations of the forbidden oxygen lines in DIXI target Comet 103P/Hartley , 2013 .

[15]  A. Bhardwaj,et al.  Model for atomic oxygen visible line emissions in Comet C/1995 O1 Hale-Bopp , 2012, 1211.5008.

[16]  E. Jehin,et al.  Forbidden oxygen lines in comets at various heliocentric distances , 2012, 1210.0842.

[17]  N. Chanover,et al.  Forbidden Oxygen Lines in Comets C/2006 W3 Christensen and C/2007 Q3 Siding Spring , 2012 .

[18]  O. Witasse,et al.  Computing uncertainties in ionosphere‐airglow models: II. The Martian airglow , 2012 .

[19]  C. Mertens,et al.  Computing uncertainties in ionosphere‐airglow models: I. Electron flux and species production uncertainties for Mars , 2012 .

[20]  A. Bhardwaj,et al.  A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE , 2012, 1203.0723.

[21]  B. Sharpee,et al.  Chemical origins of the Mars ultraviolet dayglow. , 2010, Faraday discussions.

[22]  Anthony J. Mannucci,et al.  XUV Photometer System (XPS): Improved Solar Irradiance Algorithm Using CHIANTI Spectral Models , 2008 .

[23]  A. Cochran Atomic oxygen in the comae of comets , 2007, 0807.0652.

[24]  W. Harris,et al.  Large Aperture O I 6300 Å Observations of Comet Hyakutake: Implications for the Photochemistry of OH and O I Production in Comet Hale-Bopp , 2007 .

[25]  L. Duvet,et al.  Rosina – Rosetta Orbiter Spectrometer for Ion and Neutral Analysis , 2007 .

[26]  D. Siskind,et al.  O(1S → 1D,3P) branching ratio as measured in the terrestrial nightglow , 2006 .

[27]  W. McClintock,et al.  Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): Pre-Launch and On-Orbit Calibrations , 2005 .

[28]  Gary J. Rottman,et al.  The SORCE Mission , 2005 .

[29]  D. L. Baulch,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reaxtions of Ox, HOx, NOx and SOx species , 2004 .

[30]  C. Fischer,et al.  Breit–Pauli energy levels, lifetimes, and transition probabilities for the beryllium-like to neon-like sequences☆ , 2004 .

[31]  Hans Balsiger,et al.  Interpretation of the ion mass spectra in the mass per charge range 25-35 amu/e obtained in the inner coma of Halley's comet by the HIS-sensor of the Giotto IMS experiment , 1991 .

[32]  T. Slanger,et al.  Quantum yields for the production of O(1D) from photodissociation of O2 at 1160–1770 Å , 1977 .

[33]  F. Stuhl,et al.  Deactivation of O(1S) and O2(b1Σg , 1969 .

[34]  Johannes Benkhoff,et al.  BepiColombo—Comprehensive exploration of Mercury: Mission overview and science goals , 2010 .

[35]  Gary J. Rottman,et al.  Solar EUV Experiment (SEE): Mission overview and first results , 2005 .

[36]  W. McClintock,et al.  Solar–Stellar Irradiance Comparison Experiment II (SOLSTICE II): Pre-Launch and On-Orbit Calibrations , 2005 .

[37]  Wolfgang L. Wiese,et al.  Atomic Transition Probabilities of Carbon, Nitrogen, and Oxygen: A Critical Data Compilation , 1996 .

[38]  Wolfgang L. Wiese,et al.  Atomic Transition Probabilities , 1991 .

[39]  D. L. Baulch,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry , 1980 .

[40]  Leo Haser,et al.  Distribution d’intensité dans la tête d’une comète , 1957, Bulletin de la Classe des sciences.