Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database

[1]  B. Ehlmann,et al.  Mineralogy and chemistry of San Carlos high-alkali basalts: Analyses of alteration with application for Mars exploration , 2017 .

[2]  Ashwin R. Vasavada,et al.  ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars , 2016 .

[3]  Jeffrey R. Johnson,et al.  Major-Element Compositions Seen by ChemCam Along the Curiosity Rover Traverse: The First 8,000 Observations , 2016 .

[4]  Jeffrey R. Johnson,et al.  Observation of > 5 wt % zinc at the Kimberley outcrop, Gale crater, Mars , 2016 .

[5]  Patrick Pinet,et al.  In situ evidence for continental crust on early Mars , 2015 .

[6]  Roger C. Wiens,et al.  Compositions of coarse and fine particles in martian soils at gale: A window into the production of soils , 2015 .

[7]  R. A. McInroy,et al.  Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data , 2015 .

[8]  B. Ehlmann,et al.  Quantification of Salt Anions Using Laser-Induced Breakdown Spectroscopy (LIBS) , 2015 .

[9]  N. Melikechi,et al.  Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars , 2015 .

[10]  O. Forni,et al.  First detection of fluorine on Mars: Implications for Gale Crater's geochemistry , 2015 .

[11]  Msl,et al.  In Situ Compositional Measurements of Rocks and Soils with the Alpha Particle X-ray Spectrometer on NASA's Mars Rovers , 2015 .

[12]  R. Wiens,et al.  ChemCam : Chemostratigraphy by the First Mars Microprobe , 2015 .

[13]  Hee-Seok Oh,et al.  Independent component regression for seasonal climate prediction: an efficient way to improve multimodel ensembles , 2015, Theoretical and Applied Climatology.

[14]  John Bridges,et al.  Chemistry of fracture‐filling raised ridges in Yellowknife Bay, Gale Crater: Window into past aqueous activity and habitability on Mars , 2014 .

[15]  S. Clegg,et al.  Planetary Geochemical Investigations Using Raman and Laser-Induced Breakdown Spectroscopy , 2014, Applied spectroscopy.

[16]  Linda C. Kah,et al.  Chemistry and texture of the rocks at Rocknest, Gale Crater: Evidence for sedimentary origin and diagenetic alteration , 2014 .

[17]  John Bridges,et al.  Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars , 2014 .

[18]  R. Serfling,et al.  General foundations for studying masking and swamping robustness of outlier identifiers , 2014 .

[19]  A. Yingst,et al.  A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[20]  John Bridges,et al.  Igneous mineralogy at Bradbury Rise: The first ChemCam campaign at Gale crater , 2014 .

[21]  D. Ming,et al.  Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatile‐rich igneous source , 2014 .

[22]  M B Madsen,et al.  Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars , 2013, Science.

[23]  Roger C. Wiens,et al.  ChemCam analysis of Martian fine dust , 2013 .

[24]  Roger C. Wiens,et al.  Independent component analysis classification of laser induced breakdown spectroscopy spectra , 2013 .

[25]  Christophe Ley,et al.  Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median , 2013 .

[26]  Robert L. Tokar,et al.  Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover , 2013 .

[27]  R. Wiens,et al.  The Petrochemistry of Jake_M: A Martian Mugearite , 2013, Science.

[28]  B. Ehlmann,et al.  Mineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars , 2012 .

[29]  R. Anderson,et al.  Mars Science Laboratory Mission and Science Investigation , 2012 .

[30]  M. Saccoccio,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description , 2012 .

[31]  Hongwei Ma,et al.  Characterization and Calibration of the CheMin Mineralogical Instrument on Mars Science Laboratory , 2012 .

[32]  N. Bridges,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests , 2012 .

[33]  J. M. Rhodes,et al.  Ceramic ChemCam Calibration Targets on Mars Science Laboratory , 2012 .

[34]  R. Gellert,et al.  Calibration of the Mars Science Laboratory Alpha Particle X-ray Spectrometer , 2012 .

[35]  Trevor G. Graff,et al.  The influence of multivariate analysis methods and target grain size on the accuracy of remote quantitative chemical analysis of rocks using laser induced breakdown spectroscopy , 2011 .

[36]  J. Kimura,et al.  The Petrology and Geochemistry of St. Helena Alkali Basalts: Evaluation of the Oceanic Crust-recycling Model for HIMU OIB , 2011 .

[37]  Roger C. Wiens,et al.  Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument , 2011 .

[38]  R. C. Wiens,et al.  Nonlinear mapping technique for data visualization and clustering assessment of LIBS data: application to ChemCam data , 2011, Analytical and bioanalytical chemistry.

[39]  Stewart Clegg,et al.  Strategies for Mars remote Laser-Induced Breakdown Spectroscopy analysis of sulfur in geological samples , 2011 .

[40]  A. McDonald,et al.  A GUPIX-based approach to interpreting the PIXE-plus-XRF spectra from the Mars Exploration rovers: II geochemical reference materials ☆ , 2011 .

[41]  Reg G. Willson,et al.  The Mars Science Laboratory (MSL) Mast-mounted Cameras (Mastcams) Flight Instruments , 2010 .

[42]  S. Clegg,et al.  Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques , 2009 .

[43]  S. Taylor,et al.  Planetary Crusts: Their Composition, Origin and Evolution , 2009 .

[44]  W. Cai,et al.  A new regression method based on independent component analysis. , 2006, Talanta.

[45]  Frank Westad,et al.  Independent component analysis and regression applied on sensory data , 2005 .

[46]  E. Oja,et al.  Independent Component Analysis , 2001 .

[47]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[48]  Steven W. Squyres,et al.  The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .

[49]  X. Z. Wang,et al.  A New Approach to Near-Infrared Spectral Data Analysis Using Independent Component Analysis , 2001, J. Chem. Inf. Comput. Sci..

[50]  M. Raven,et al.  Geology and Characterization of Two Hydrothermal Nontronites from Weathered Metamorphic Rocks at the Uley Graphite Mine, South Australia , 2000 .

[51]  David A. Cremers,et al.  Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for Application to Space Exploration , 2000 .

[52]  J. Cardoso Infomax and maximum likelihood for blind source separation , 1997, IEEE Signal Processing Letters.

[53]  S. Taylor,et al.  Early Proterozoic crustal evolution: Geochemical and NdPb isotopic evidence from metasedimentary rocks, southwestern North America , 1995 .

[54]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[55]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[56]  S. Taylor,et al.  Rare earth element patterns in Archean high-grade metasediments and their tectonic significance , 1986 .

[57]  S. Taylor,et al.  Geochemistry of Archean metasedimentary rocks from West Greenland , 1984 .

[58]  S. Taylor,et al.  Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia , 1983 .

[59]  Leon J. Radziemski,et al.  Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry , 1983 .

[60]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .

[61]  S. McLennan Trace element geochemistry of sedimentary rocks : implications for the composition and evolution of the continental crust , 1981 .

[62]  G. M. Young,et al.  Rare earth elements in Huronian (Lower Proterozoic) sedimentary rocks: Composition and evolution of the post-Kenoran upper crust , 1979 .

[63]  M. Prinz,et al.  Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis , 1978 .

[64]  S. Taylor,et al.  Rare earth element patterns and crustal evolution—I. Australian post-Archean sedimentary rocks , 1976 .

[65]  J. Fahey,et al.  An improved method for the determination of FeO in rocks and minerals including garnet , 1962 .