On the Limitation of Spectral Methods: From the Gaussian Hidden Clique Problem to Rank One Perturbations of Gaussian Tensors
暂无分享,去创建一个
[1] János Komlós,et al. The eigenvalues of random symmetric matrices , 1981, Comb..
[2] Colin McDiarmid,et al. Topics in Chromatic Graph Theory: Colouring random graphs , 2015 .
[3] Ravi B. Boppana,et al. Eigenvalues and graph bisection: An average-case analysis , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[4] W. Waterhouse. The absolute-value estimate for symmetric multilinear forms☆ , 1990 .
[5] Mark Jerrum,et al. Large Cliques Elude the Metropolis Process , 1992, Random Struct. Algorithms.
[6] C. Tracy,et al. Introduction to Random Matrices , 1992, hep-th/9210073.
[7] D. Welsh,et al. A Spectral Technique for Coloring Random 3-Colorable Graphs , 1994 .
[8] Noga Alon,et al. Finding a large hidden clique in a random graph , 1998, SODA '98.
[9] U. Feige,et al. Finding and certifying a large hidden clique in a semirandom graph , 2000, Random Struct. Algorithms.
[10] Frank McSherry,et al. Spectral partitioning of random graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[11] Abraham D. Flaxman,et al. A spectral technique for random satisfiable 3CNF formulas , 2003, SODA '03.
[12] A. Guionnet,et al. A Fourier view on the R-transform and related asymptotics of spherical integrals , 2005 .
[13] M. Talagrand. Free energy of the spherical mean field model , 2006 .
[14] D. Féral,et al. The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.
[15] E. Candès,et al. Searching for a trail of evidence in a maze , 2007, math/0701668.
[16] Robert Krauthgamer,et al. How hard is it to approximate the best Nash equilibrium? , 2009, SODA.
[17] U. Feige,et al. Finding hidden cliques in linear time , 2009 .
[18] Dan Vilenchik,et al. Small Clique Detection and Approximate Nash Equilibria , 2009, APPROX-RANDOM.
[19] Santosh S. Vempala,et al. Spectral Algorithms , 2009, Found. Trends Theor. Comput. Sci..
[20] Luc Devroye,et al. Combinatorial Testing Problems , 2009, 0908.3437.
[21] Antonio Auffinger,et al. Random Matrices and Complexity of Spin Glasses , 2010, 1003.1129.
[22] Jun Yin,et al. The Isotropic Semicircle Law and Deformation of Wigner Matrices , 2011, 1110.6449.
[23] Sivaraman Balakrishnan,et al. Minimax Localization of Structural Information in Large Noisy Matrices , 2011, NIPS.
[24] Statistical and computational tradeoffs in biclustering , 2011 .
[25] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[26] A. Nobel,et al. Energy landscape for large average submatrix detection problems in Gaussian random matrices , 2012, 1211.2284.
[27] Alekh Agarwal,et al. Computational Trade-offs in Statistical Learning , 2012 .
[28] Andrea Montanari,et al. Finding Hidden Cliques of Size \sqrt{N/e} in Nearly Linear Time , 2013, ArXiv.
[29] Marcelo J. Moreira,et al. Asymptotic power of sphericity tests for high-dimensional data , 2013, 1306.4867.
[30] Philippe Rigollet,et al. Complexity Theoretic Lower Bounds for Sparse Principal Component Detection , 2013, COLT.
[31] Yuval Peres,et al. Finding Hidden Cliques in Linear Time with High Probability , 2010, Combinatorics, Probability and Computing.
[32] Yihong Wu,et al. Computational Barriers in Minimax Submatrix Detection , 2013, ArXiv.
[33] Andrea Montanari,et al. A statistical model for tensor PCA , 2014, NIPS.
[34] A. Dembo,et al. Matrix Optimization Under Random External Fields , 2014, 1409.4606.
[35] Andrea Montanari,et al. Finding Hidden Cliques of Size $$\sqrt{N/e}$$N/e in Nearly Linear Time , 2013, Found. Comput. Math..
[36] Dean Alderucci. A SPECTRAL ALGORITHM FOR LEARNING HIDDEN MARKOV MODELS THAT HAVE SILENT STATES , 2015 .
[37] Bruce E. Hajek,et al. Submatrix localization via message passing , 2015, J. Mach. Learn. Res..