Par@Graph – a parallel toolbox for the construction and analysis of large complex climate networks

In this paper, we present Par@Graph, a software toolbox to reconstruct and analyze complex climate networks having a large number of nodes (up to at least 10) and edges (up to at least 10). The key innovation is an efficient set of parallel software tools designed to leverage the inherited hybrid parallelism in distributed-memory clusters of multicore machines. The performance of the toolbox is illustrated through networks derived from sea surface height (SSH) data of a global high-resolution ocean model. Less than 8 min are needed on 90 Intel Xeon E5-4650 processors to reconstruct a climate network including the preprocessing and the correlation of 3×10 SSH time series, resulting in a weighted graph with the same number of vertices and about 3.2×10 edges. In less than 14 min on 30 processors, the resulted graph’s degree centrality, strength, connected components, eigenvector centrality, entropy and clustering coefficient metrics were obtained. These results indicate that a complete cycle to construct and analyze a large-scale climate network is available under 22 min Par@Graph therefore facilitates the application of climate network analysis on high-resolution observations and model results, by enabling fast network reconstruct from the calculation of statistical similarities between climate time series. It also enables network analysis at unprecedented scales on a variety of different sizes of input data sets.

[1]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[2]  Paul J. Roebber,et al.  The architecture of the climate network , 2004 .

[3]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[4]  Jürgen Kurths,et al.  Investigating the topology of interacting networks , 2011, 1102.3067.

[5]  S. Havlin,et al.  Climate networks around the globe are significantly affected by El Niño. , 2008, Physical review letters.

[6]  Stephen G. Yeager,et al.  Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies , 2004 .

[7]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[8]  J. Kurths,et al.  Interaction network based early warning indicators for the Atlantic MOC collapse , 2013 .

[9]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[10]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[11]  G. Froyland,et al.  How well-connected is the surface of the global ocean? , 2014, Chaos.

[12]  Albert Chan,et al.  CGMGRAPH/CGMLIB: Implementing and Testing CGM Graph Algorithms on PC Clusters and Shared Memory Machines , 2005, Int. J. High Perform. Comput. Appl..

[13]  Jeremy G. Siek,et al.  The Boost Graph Library - User Guide and Reference Manual , 2001, C++ in-depth series.

[14]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[15]  A. Tsonis,et al.  Topology and predictability of El Niño and La Niña networks. , 2008, Physical review letters.

[16]  Potsdam,et al.  Complex networks in climate dynamics. Comparing linear and nonlinear network construction methods , 2009, 0907.4359.

[17]  M. Dellnitz,et al.  Seasonal variability of the subpolar gyres in the Southern Ocean: a numerical investigation based on transfer operators , 2009 .

[18]  Ginestra Bianconi,et al.  Entropy measures for networks: toward an information theory of complex topologies. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  S. Havlin,et al.  Stability of Climate Networks with Time , 2011, Scientific Reports.

[20]  Cristina Masoller,et al.  On the effects of lag-times in networks constructed from similarities of monthly fluctuations of climate fields , 2013 .

[21]  Douglas P. Gregor,et al.  The Parallel BGL : A Generic Library for Distributed Graph Computations , 2005 .

[22]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[23]  S. Havlin,et al.  Emergence of El Niño as an autonomous component in the climate network. , 2010, Physical review letters.

[24]  S. Havlin,et al.  Pattern of climate network blinking links follows El Niño events , 2008 .

[25]  Sergey Kravtsov,et al.  Atlantic Multidecadal Oscillation and Northern Hemisphere’s climate variability , 2010, Climate Dynamics.

[26]  Henk A. Dijkstra,et al.  Are North Atlantic multidecadal SST anomalies westward propagating? , 2014 .

[27]  Norbert Marwan,et al.  Characterizing the evolution of climate networks , 2014 .

[28]  Henk A. Dijkstra,et al.  Response of the Atlantic Ocean circulation to Greenland Ice Sheet melting in a strongly‐eddying ocean model , 2012 .

[29]  A. Tantet,et al.  An interaction network perspective on the relation between patterns of sea surface temperature variability and global mean surface temperature , 2013 .

[30]  L. D. Costa,et al.  Community structure and dynamics in climate networks , 2011 .

[31]  Henk A. Dijkstra,et al.  Deep ocean early warning signals of an Atlantic MOC collapse , 2014, 1405.1315.

[32]  Jonathan W. Berry,et al.  Challenges in Parallel Graph Processing , 2007, Parallel Process. Lett..

[33]  Frank O. Bryan,et al.  Boundary impulse response functions in a century-long eddying global ocean simulation , 2010 .

[34]  P. Bonacich Factoring and weighting approaches to status scores and clique identification , 1972 .

[35]  J. Dukowicz,et al.  Implicit free‐surface method for the Bryan‐Cox‐Semtner ocean model , 1994 .

[36]  Sergey Kravtsov,et al.  A new dynamical mechanism for major climate shifts , 2007 .

[37]  Jürgen Kurths,et al.  The backbone of climate networks , 2009 .

[38]  Norbert Marwan,et al.  The backbone of the climate network , 2009, 1002.2100.

[39]  Geli Wang,et al.  On the Role of Atmospheric Teleconnections in Climate , 2008 .