Phonons in Bi 2 S 3 nanostructures: Raman scattering and first-principles studies
暂无分享,去创建一个
Qihua Xiong | Chee Kwan Gan | Bo Peng | Jun Zhang | Jun Zhang | Q. Xiong | Bo Peng | C. Gan | Yanyuan Zhao | Zeping Peng | Yanyuan Zhao | Kun Ting Eddie Chua | Zeping Peng | K. T. Chua
[1] P. N. Bhosale,et al. Growth of Bi2S3 film using a solution-gas interface technique , 1983 .
[2] Yadong Li,et al. Bi2S3 nanotubes: Facile synthesis and growth mechanism , 2009 .
[3] C. H. Bhosale,et al. Preparation and characterization of electrodeposited Bi2S3 thin films prepared from non-aqueous media , 2000 .
[4] P. Eklund,et al. Raman Scattering from Surface Phonons in Rectangular Cross-sectional w-ZnS Nanowires , 2004 .
[5] P. Eklund,et al. Raman spectroscopy and structure of crystalline gallium phosphide nanowires. , 2003, Journal of nanoscience and nanotechnology.
[6] G. Meng,et al. Electrochemical fabrication of ordered Bi2S3 nanowire arrays , 2001 .
[7] Lianmao Peng,et al. Individual Bi2S3 Nanowire-Based Room-Temperature H2 Sensor , 2008 .
[8] John Robertson,et al. Raman spectroscopy of silicon nanowires , 2003 .
[9] L. Cademartiri,et al. Cross-linking Bi2S3 ultrathin nanowires: a platform for nanostructure formation and biomolecule detection. , 2009, Nano letters.
[10] Surface Optic Phonons in Cylindrical and Rectangular Cross-Sectional Semiconducting Nanowires , 2005 .
[11] Xiaohong Yang,et al. Facile solvothermal synthesis of single-crystalline Bi2S3 nanorods on a large scale , 2006 .
[12] Chang Ming Li,et al. Single-crystalline Bi2S3 nanowire network film and its optical switches , 2008, Nanotechnology.
[13] Xin Wang,et al. Controllable synthesis of Bi2S3 hierarchical nanostructures: Effect of addition method on structures , 2009 .
[14] K. Trentelman. A note on the characterization of bismuth black by Raman microspectroscopy , 2009 .
[15] Jan Grimm,et al. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles , 2006, Nature materials.
[16] L. Ley,et al. The one phonon Raman spectrum in microcrystalline silicon , 1981 .
[17] Shui-Tong Lee,et al. One-dimensional II–VI nanostructures: Synthesis, properties and optoelectronic applications , 2010 .
[18] Wentao Sun,et al. Uniform Bi2S3 nanowires: Structure, growth, and field-effect transistors , 2009 .
[19] T. Thongtem,et al. Polymer-assisted hydrothermal synthesis of Bi2S3 nanostructured flowers , 2010 .
[20] Jian Yang,et al. Hydrothermal preparation and characterization of rod-like ultrafine powders of bismuth sulfide , 1998 .
[22] E. Tiekink,et al. Growth of bismuth sulfide nanowire using bismuth trisxanthate single source precursors , 2003 .
[23] T. Trindade,et al. The use of bismuth(III) dithiocarbamato complexes as precursors for the low-pressure MOCVD of Bi2S3 , 2000 .
[24] S. K. Srivastava,et al. Polypyrrole Coating of Tartaric Acid-Assisted Synthesized Bi2S3 Nanorods , 2007 .
[25] Effect of H2 on the electrical transport properties of single Bi2S3 nanowires. , 2006, The journal of physical chemistry. B.
[26] M. Kanatzidis,et al. Transport Properties of Bi2S3 and the Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13 , 1997 .
[27] Peter C. Eklund,et al. Surface Optical Phonons in Gallium Phosphide Nanowires , 2003 .
[28] M. Dresselhaus,et al. Perspectives on carbon nanotubes and graphene Raman spectroscopy. , 2010, Nano letters.
[29] Handong Sun,et al. Vertically aligned cadmium chalcogenide nanowire arrays on muscovite mica: a demonstration of epitaxial growth strategy. , 2010, Nano letters.
[30] Dean G. Grier,et al. Tris(benzylthiolato)bismuth. Efficient Precursor to Phase-Pure Polycrystalline Bi(2)S(3). , 1998, Inorganic chemistry.
[31] A. Debernardi. PHONON LINEWIDTH IN III-V SEMICONDUCTORS FROM DENSITY-FUNCTIONAL PERTURBATION THEORY , 1998 .
[32] D. Tanner,et al. Raman study of the phonon modes in bismuth pyrochlores , 2008 .
[33] Richard M. Martin,et al. Ab Initio Force Constants of GaAs: A New Approach to Calculation of Phonons and Dielectric Properties , 1982 .
[34] S. Shang,et al. A mixed-space approach to first-principles calculations of phonon frequencies for polar materials , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[35] Kunc,et al. Real-space convergence of the force series in the lattice dynamics of germanium. , 1985, Physical review. B, Condensed matter.
[36] Manuel Cardona,et al. Resonant Raman scattering in ZnO , 1977 .
[37] M. Dresselhaus,et al. Studying disorder in graphite-based systems by Raman spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.
[38] Jer-Lai Kuo,et al. Composition-temperature phase diagram of BexZn1−xO from first principles , 2010 .
[39] T. Bein,et al. Oriented growth of single-crystalline Bi2S3 nanowire arrays. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.
[40] Testa,et al. Green's-function approach to linear response in solids. , 1987, Physical review letters.
[41] Georg Kresse,et al. Ab initio Force Constant Approach to Phonon Dispersion Relations of Diamond and Graphite , 1995 .
[42] Philippe M. Fauchet,et al. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .
[43] Xiaoping Shen,et al. Synthesis and characterization of Bi 2S 3 faceted nanotube bundles , 2006 .
[44] Jun Zhang,et al. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. , 2011, Nano letters.
[45] J. Lu,et al. Preparation of uniform Bi2S3 nanoribbons at a low temperature , 2008 .
[46] P. Eklund,et al. Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study , 2006 .
[47] P. Eklund,et al. Raman scattering studies of individual polar semiconducting nanowires: phonon splitting and antenna effects , 2006 .
[48] Edward H. Sargent,et al. Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. , 2008, Nano letters.
[49] Stefano de Gironcoli,et al. Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.
[50] Jian-Sheng Wang,et al. First-principles study of heat transport properties of graphene nanoribbons. , 2010, Nano letters (Print).
[51] R. Merlin,et al. Raman scattering in materials science , 2000 .