Effective thermal conductivity analysis of vertical-cavity top-surface-emitting lasers with semiconducting Bragg mirrors

A new approximate analytical approach is developed and applied to investigate thermal properties of top-surface-emitting vertical- cavity diode lasers (VCSELs) mounted substrate-down. Multilayer structure of distributed-Bragg reflectors is taken into account by considering anisotropic thermal conductivity. Design conditions for minimal thermal resistance in short- and long- wavelength systems are specified for devices with various active- region diameters. Our results indicate that difficulties with obtaining the cw operation of long-wavelength VCSELs are primarily associated with intrinsic properties rather than with their thermal resistance.

[1]  Kenichi Iga,et al.  Near room temperature continuous wave lasing characteristics of GaInAsP/InP surface emitting laser , 1993 .

[2]  M. Osinski,et al.  Thermal properties of etched-well surface-emitting semiconductor lasers , 1991 .

[3]  A. Y. Cho,et al.  90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8 mu m diameter core silica fibre , 1990 .

[4]  Marek Osinski,et al.  Self-consistent calculation of temperature profiles in proton-implanted top-surface-emitting diode lasers , 1993, Other Conferences.

[5]  U. Koren,et al.  Low-threshold, high-temperature pulsed operation of InGaAsP/InP vertical cavity surface emitting lasers , 1991, IEEE Photonics Technology Letters.

[6]  C. Chang-Hasnain,et al.  Transverse mode characteristics of vertical cavity surface-emitting lasers , 1990 .

[7]  R. Michalzik,et al.  Modeling and design of proton-implanted ultralow-threshold vertical-cavity laser diodes , 1993 .

[8]  Li-Wei Tu,et al.  High temperature performance of three-quantum-well vertical-cavity top-emitting lasers , 1991 .

[9]  Kenichi Iga,et al.  CBE grown 1.5 mu m GaInAsP-InP surface emitting lasers , 1992 .

[10]  Fow-Sen Choa,et al.  High reflectivity 1.55 μm InP/InGaAsP Bragg mirror grown by chemical beam epitaxy , 1991 .

[11]  K. Yodoshi,et al.  GaAs buried heterostructure vertical cavity top-surface emitting lasers , 1991 .

[12]  Wlodzimierz Nakwaski,et al.  Thermal conductivity of binary, ternary, and quaternary III‐V compounds , 1988 .

[13]  Peter Ressel,et al.  Optimised proton implantation step for vertical-cavity surface-emitting lasers , 1993 .

[14]  Marlin W. Focht,et al.  Extended temperature and wavelength performance of vertical cavity top surface emitting lasers , 1993 .

[15]  Takashi Kurokawa,et al.  Room Temperature Pulsed Operation of a 1.5-/spl mu/m GaInAsP/InP Vertical Cavity Surface Emitting Laser , 1992, 50th Annual Device Research Conference.

[16]  Daryoosh Vakhshoori,et al.  Top‐surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies , 1993 .

[17]  M. Osinski,et al.  Thermal resistance of top-surface-emitting vertical-cavity semiconductor lasers and monolithic two-dimensional arrays , 1992 .

[18]  T. Baba,et al.  Low threshold room temperature pulsed and -57 degrees C CW operations of 1.3 mu m GaInAsP/InP circular planar buried heterostructure surface-emitting lasers , 1993, IEEE Photonics Technology Letters.

[19]  B. Weir,et al.  Continuous wave top surface emitting quantum well lasers using hybrid metal/semiconductor reflectors , 1990 .

[20]  J. P. Harbison,et al.  Vertical‐cavity surface‐emitting InGaAs/GaAs lasers with planar lateral definition , 1990 .

[21]  G. A. Vawter,et al.  Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD , 1991, IEEE Photonics Technology Letters.

[22]  Marek Osinski,et al.  Thermal analysis of GaAs-AlGaAs etched-well surface-emitting double-heterostructure lasers with dielectric mirrors , 1993 .

[23]  E. F. Steigmeier,et al.  Thermal Conductivity and Seebeck Coefficient of InP , 1964 .

[24]  B. Tell,et al.  Deep-red (770 nm) continuous-wave top-surface-emitting vertical-cavity AlGaAs superlattice lasers , 1991 .