A note on the strong matching preclusion problem for data center networks

Abstract The strong matching preclusion number of a graph is the minimum number of vertices and edges whose deletion results in a graph that has neither perfect matchings nor almost perfect matchings. The class of data center networks has been proposed as a good class of models in the design of computer networks. Such a data center network can be viewed as a server-centric interconnection network structure, which can support millions of servers with high network capacity that uses only commodity switches. In this paper, we determine the strong matching preclusion number of k-dimensional data center networks with n-port switches and t k , n servers for k ≥ 0 and n ≥ 2 . In addition, optimal strong matching preclusion sets of these graphs are categorized.

[1]  Lei Shi,et al.  Dcell: a scalable and fault-tolerant network structure for data centers , 2008, SIGCOMM '08.

[2]  Eddie Cheng,et al.  Strong matching preclusion for augmented cubes , 2013, Theor. Comput. Sci..

[3]  Xiaohua Jia,et al.  Hamiltonian Properties of DCell Networks , 2015, Comput. J..

[4]  Samee Ullah Khan,et al.  On the Connectivity of Data Center Networks , 2013, IEEE Communications Letters.

[5]  Yingzhi Tian,et al.  Strong matching preclusion for k-composition networks , 2018, Theor. Comput. Sci..

[6]  Insung Ihm,et al.  Strong matching preclusion under the conditional fault model , 2013, Discret. Appl. Math..

[7]  Kai Feng,et al.  Strong matching preclusion for k-ary n-cubes , 2013, Discret. Appl. Math..

[8]  Eddie Cheng,et al.  A Concise Survey of Matching Preclusion in Interconnection Networks , 2019, J. Interconnect. Networks.

[9]  Insung Ihm,et al.  Strong matching preclusion , 2011, Theor. Comput. Sci..

[10]  Huazhong Lü,et al.  Super edge-connectivity and matching preclusion of data center networks , 2019, Discret. Math. Theor. Comput. Sci..

[11]  Eddie Cheng,et al.  Strong Matching Preclusion of Arrangement Graphs , 2016, J. Interconnect. Networks.

[12]  Cheng-Kuan Lin,et al.  The restricted h-connectivity of the data center network DCell , 2016, Discret. Appl. Math..

[13]  Jie Wu,et al.  Towards the Tradeoffs in Designing Data Center Network Architectures , 2017 .

[14]  Eddie Cheng,et al.  Strong Matching preclusion of Pancake graphs , 2013, J. Interconnect. Networks.

[15]  Cheng-Kuan Lin,et al.  The extra connectivity, extra conditional diagnosability and t/k-diagnosability of the data center network DCell , 2019, Theor. Comput. Sci..

[16]  Rong-Xia Hao,et al.  The pessimistic diagnosability of data center networks , 2018, Inf. Process. Lett..

[17]  Jung-Sheng Fu Conditional fault Hamiltonicity of the complete graph , 2008, Inf. Process. Lett..

[18]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[19]  Eddie Cheng,et al.  Strongly Menger connectedness of data center network and (n, k)-star graph , 2019, Theor. Comput. Sci..

[20]  Jimmy J. M. Tan,et al.  Conditional fault hamiltonian connectivity of the complete graph , 2009, Inf. Process. Lett..

[21]  Xiao-Wen Qin,et al.  Conditional edge-fault-tolerant Hamiltonicity of the data center network , 2018, Discret. Appl. Math..

[22]  Cheng-Kuan Lin,et al.  Vertex-disjoint paths in DCell networks , 2016, J. Parallel Distributed Comput..

[23]  Eddie Cheng,et al.  Strong matching preclusion of (n, k)-star graphs , 2016, Theor. Comput. Sci..

[24]  Zhao Wang,et al.  Strong matching preclusion number of graphs , 2018, Theor. Comput. Sci..