Synthetic Ligand Selection Affects Stoichiometry, Carrier Dynamics, and Trapping in CuInSe2 Nanocrystals.

CuInSe2 nanocrystals exhibit tunable near-infrared bandgaps that bolster utility in photovoltaic applications as well as offer potential as substitutes for more toxic Cd- and Pb-based semiconductor compositions. However, they can present a variety of defect states and unusual photophysics. Here, we examine the effects of ligand composition (oleylamine, diphenylphosphine, and tributylphosphine) on carrier dynamics in these materials. Via spectroscopic measurements such as photoluminescence and transient absorption, we find that ligands present during the synthesis of CuInSe2 nanocrystals impart nonradiative electronic states which compete with radiative recombination and give rise to low photoluminescence quantum yields. We characterize the nature of these defect states (hole vs electron traps) and investigate whether they exist at the surface or interior of the nanocrystals. Carrier lifetimes are highly dependent on ligand identity where oleylamine-capped nanocrystals exhibit rapid trapping (<20 ps) followed by diphenylphosphine (<500 ps) and finally tributylphosphine (>2 ns). A majority of carrier population localizes at indium copper antisites (electrons), copper vacancies (holes), or surface traps (electrons and/or holes), all of which are nonemissive.

[1]  T. Van Voorhis,et al.  Colloidal CdSe nanocrystals are inherently defective , 2021, Nature Communications.

[2]  M. Green,et al.  Emerging inorganic compound thin film photovoltaic materials: Progress, challenges and strategies , 2020 .

[3]  Transient Lattice Response upon Photoexcitation in CuInSe2 Nanocrystals with Organic or Inorganic Surface Passivation. , 2020, ACS nano.

[4]  J. Parisi,et al.  Shorter Is Not Always Better: Analysis of a Ligand Exchange Procedure for CuInS2 Nanoparticles as the Photovoltaic Absorber Material , 2020 .

[5]  O. Bondarchuk,et al.  Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface , 2020, Nature Communications.

[6]  Jun Du,et al.  Spectroscopic insights into high defect tolerance of Zn:CuInSe2 quantum-dot-sensitized solar cells , 2020, Nature Energy.

[7]  H. Ghosh,et al.  Ternary Metal Chalcogenides: Into the Exciton and Bi-Exciton Dynamics. , 2019, The journal of physical chemistry letters.

[8]  A. Zanatta Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination , 2019, Scientific Reports.

[9]  A. Tiwari,et al.  Efficiency Improvement of Near‐Stoichiometric CuInSe2 Solar Cells for Application in Tandem Devices , 2019, Advanced Energy Materials.

[10]  C. de Mello Donegá,et al.  Optoelectronic Properties of Ternary I–III–VI2 Semiconductor Nanocrystals: Bright Prospects with Elusive Origins , 2019, The journal of physical chemistry letters.

[11]  B. Korgel,et al.  Pervasive Cation Vacancies and Antisite Defects in Copper Indium Diselenide (CuInSe2) Nanocrystals , 2019, The Journal of Physical Chemistry C.

[12]  M. Beard,et al.  Infrared Quantum Dots: Progress, Challenges, and Opportunities. , 2019, ACS nano.

[13]  B. Korgel,et al.  Facile Exchange of Tightly Bonded L-Type Oleylamine and Diphenylphosphine Ligands on Copper Indium Diselenide Nanocrystals Mediated by Molecular Iodine , 2018, Chemistry of Materials.

[14]  J. J. Geuchies,et al.  Tuning and Probing the Distribution of Cu+ and Cu2+ Trap States Responsible for Broad-Band Photoluminescence in CuInS2 Nanocrystals , 2018, ACS nano.

[15]  R. Brutchey,et al.  Utilizing Diselenide Precursors toward Rationally Controlled Synthesis of Metastable CuInSe2 Nanocrystals , 2018, Chemistry of Materials.

[16]  Dae-Hyeong Kim,et al.  Flexible quantum dot light-emitting diodes for next-generation displays , 2018, npj Flexible Electronics.

[17]  Uri Banin,et al.  Colloidal Quantum Nanostructures: Emerging Materials for Display Applications , 2018, Angewandte Chemie.

[18]  V. Wood,et al.  Tuning the Composition of Multicomponent Semiconductor Nanocrystals: The Case of I–III–VI Materials , 2018 .

[19]  Clare E. Rowland,et al.  Elevated Temperature Photophysical Properties and Morphological Stability of CdSe and CdSe/CdS Nanoplatelets. , 2018, The journal of physical chemistry letters.

[20]  C. Giansante,et al.  Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective , 2017, The journal of physical chemistry letters.

[21]  N. Makarov,et al.  Light Emission Mechanisms in CuInS2 Quantum Dots Evaluated by Spectral Electrochemistry , 2017 .

[22]  Weihua Tang,et al.  Surface ligands engineering of semiconductor quantum dots for chemosensory and biological applications , 2017 .

[23]  Thomas Feurer,et al.  Progress in thin film CIGS photovoltaics – Research and development, manufacturing, and applications , 2017 .

[24]  V. Klimov,et al.  Spectro-electrochemical Probing of Intrinsic and Extrinsic Processes in Exciton Recombination in I-III-VI2 Nanocrystals. , 2017, Nano letters.

[25]  R. Brown,et al.  Flexible CuInSe2 Nanocrystal Solar Cells on Paper , 2017 .

[26]  Z. Hens,et al.  On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals , 2017 .

[27]  P. Bujak Core and surface engineering in binary, ternary and quaternary semiconductor nanocrystals—A critical review , 2016 .

[28]  Jaehoon Lim,et al.  Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. , 2016, Chemical reviews.

[29]  E. Weiss,et al.  Electronic Processes within Quantum Dot-Molecule Complexes. , 2016, Chemical reviews.

[30]  M. Carrière,et al.  Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. , 2016, Chemical reviews.

[31]  Alice D. P. Leach,et al.  Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin. , 2016, The journal of physical chemistry letters.

[32]  D. Gamelin,et al.  Singlet-Triplet Splittings in the Luminescent Excited States of Colloidal Cu(+):CdSe, Cu(+):InP, and CuInS2 Nanocrystals: Charge-Transfer Configurations and Self-Trapped Excitons. , 2015, Journal of the American Chemical Society.

[33]  M. Zaabat,et al.  The Copper Indium Selenium (CuInSe2) thin Films Solar Cells for Hybrid Photovoltaic Thermal Collectors (PVT) , 2015 .

[34]  Z. Du,et al.  The phase transformation of CuInS2 from chalcopyrite to wurtzite , 2015, Nanoscale Research Letters.

[35]  J. Owen The coordination chemistry of nanocrystal surfaces , 2015, Science.

[36]  S. Crooker,et al.  Magneto-Optical Properties of CuInS2 Nanocrystals. , 2014, The journal of physical chemistry letters.

[37]  Qiang Zhao,et al.  Surface Chemistry of CuInS2 Colloidal Nanocrystals, Tight Binding of L-Type Ligands , 2014 .

[38]  B. J. Whitaker,et al.  Sub-bandgap emission and intraband defect-related excited-state dynamics in colloidal CuInS2/ZnS quantum dots revealed by femtosecond pump–dump–probe spectroscopy , 2014 .

[39]  Clare E. Rowland,et al.  Silicon nanocrystals at elevated temperatures: retention of photoluminescence and diamond silicon to β-silicon carbide phase transition. , 2014, ACS nano.

[40]  R. Schaller,et al.  Efficient Carrier Multiplication in Colloidal CuInSe2 Nanocrystals. , 2014, The journal of physical chemistry letters.

[41]  R. Schaller,et al.  Carrier dynamics in highly quantum-confined, colloidal indium antimonide nanocrystals. , 2014, ACS nano.

[42]  Moungi G Bawendi,et al.  Energy level modification in lead sulfide quantum dot thin films through ligand exchange. , 2014, ACS nano.

[43]  E. Weiss,et al.  The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots. , 2014, Annual review of physical chemistry.

[44]  S. Karthikeyan,et al.  Study of quasi-amorphous to nanocrystalline phase transition in thermally evaporated CuInS_2 thin films , 2014 .

[45]  Clare E. Rowland,et al.  Thermal stability of colloidal InP nanocrystals: small inorganic ligands boost high-temperature photoluminescence. , 2014, ACS nano.

[46]  Y. Masumoto,et al.  Ultrafast carrier dynamics in CuInS2 quantum dots , 2014 .

[47]  Jonathan S. Owen,et al.  Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. , 2013, Journal of the American Chemical Society.

[48]  V. Wood,et al.  Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals , 2013, Chemistry of materials : a publication of the American Chemical Society.

[49]  Clare E. Rowland,et al.  Exciton fate in semiconductor nanocrystals at elevated temperatures: Hole trapping outcompetes exciton deactivation , 2013 .

[50]  Wenhui Zhou,et al.  Efficiency enhancement of dye-sensitized solar cells (DSSCs) using ligand exchanged CuInS2 NCs as counter electrode materials , 2013 .

[51]  P. Kamat,et al.  Quantum Dot Surface Chemistry: Ligand Effects and Electron Transfer Reactions , 2013 .

[52]  Matthew G. Panthani,et al.  CuInSe2 Quantum Dot Solar Cells with High Open-Circuit Voltage. , 2013, The journal of physical chemistry letters.

[53]  P. Reiss,et al.  Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications , 2013 .

[54]  Haitao Liu,et al.  Conversion Reactions of Cadmium Chalcogenide Nanocrystal Precursors , 2013 .

[55]  Z. Hens,et al.  A Solution NMR Toolbox for Characterizing the Surface Chemistry of Colloidal Nanocrystals , 2013 .

[56]  Hilmi Volkan Demir,et al.  Color science of nanocrystal quantum dots for lighting and displays , 2013 .

[57]  L. Etgar Semiconductor Nanocrystals as Light Harvesters in Solar Cells , 2013, Materials.

[58]  Christopher M. Evans,et al.  Review of the synthesis and properties of colloidal quantum dots: the evolving role of coordinating surface ligands , 2012 .

[59]  B. Korgel,et al.  Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals. , 2012, ACS applied materials & interfaces.

[60]  Shenjie Li,et al.  Alloyed (ZnSe)(x)(CuInSe2)(1-x) and CuInSe(x)S(2-x) nanocrystals with a monophase zinc blende structure over the entire composition range. , 2011, Inorganic chemistry.

[61]  A. Rogach,et al.  Semiconductor Nanocrystal Quantum Dots as Solar Cell Components and Photosensitizers: Material, Charge Transfer, and Separation Aspects of Some Device Topologies , 2011 .

[62]  Dmitri V Talapin,et al.  Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS3(2-), OH-, and NH2- as surface ligands. , 2011, Journal of the American Chemical Society.

[63]  Zhenghong Lu,et al.  Colloidal CuInSe2 Nanocrystals in the Quantum Confinement Regime: Synthesis, Optical Properties, and Electroluminescence , 2011 .

[64]  Daniel J. Hellebusch,et al.  Spray-deposited CuInSe2 nanocrystal photovoltaics , 2010 .

[65]  J. Luther,et al.  Absolute Photoluminescence Quantum Yields of IR-26 Dye, PbS, and PbSe Quantum Dots , 2010 .

[66]  M. Kovalenko,et al.  Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands , 2009, Science.

[67]  Ananth Dodabalapur,et al.  Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal "inks" for printable photovoltaics. , 2008, Journal of the American Chemical Society.

[68]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[69]  T. Hyeon,et al.  Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. , 2008, Accounts of chemical research.

[70]  P. Reiss Synthesis of semiconductor nanocrystals in organic solvents , 2008 .

[71]  V. Klimov Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. , 2007, Annual review of physical chemistry.

[72]  P. Mulvaney,et al.  From Cd-rich to se-rich--the manipulation of CdSe nanocrystal surface stoichiometry. , 2007, Journal of the American Chemical Society.

[73]  R. R. Philip,et al.  Nonideal anion displacement, band gap variation, and valence band splitting in Cu–In–Se compounds , 2005 .

[74]  R. Raffaelle,et al.  Synthesis and Characterization of Colloidal CuInS2 Nanoparticles from a Molecular Single-Source Precursor , 2004 .

[75]  O. Madelung I-III-VI 2 compounds , 2004 .

[76]  O. Madelung Elements of the IVth group and IV-IV compounds , 2004 .

[77]  Victor I. Klimov,et al.  Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals , 2000 .

[78]  P. Guyot-Sionnest,et al.  Intraband transitions in semiconductor nanocrystals , 1998 .

[79]  C. Rincón,et al.  Lattice vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry , 1992 .

[80]  C. A. Streuli,et al.  The Basicity of Phosphines , 1960 .