Domain Decomposition with Local Impedance Conditions for the Helmholtz Equation with Absorption

We consider one-level additive Schwarz preconditioners for the Helmholtz equation (with increasing wavenumber $k$), discretized using fixed-order nodal conforming finite elements on a family of simplicial fine meshes with diameter $h$, chosen to maintain accuracy as $k$ increases. The preconditioners combine independent local solves (with impedance boundary conditions) on overlapping subdomains of diameter $H$ and overlap $\delta$, and prolongation/restriction operators defined using a partition of unity, this formulation was previously proposed in [J.H. Kimn and M. Sarkis, Comp. Meth. Appl. Mech. Engrg. 196, 1507-1514, 2007]. In numerical experiments (with $\delta \sim H$) we observe robust (i.e. $k-$independent) GMRES convergence as $k$ increases, both with $H$ fixed, and with $H$ decreasing moderately as $k$ increases. This provides a highly-parallel, $k-$robust one-level domain-decomposition method. We provide supporting theory for this observation by studying the preconditioner applied to a range of absorptive problems, $k^2\mapsto k^2+ \mathrm{i} \varepsilon$, with absorption parameter $\varepsilon$, including the "pure Helmholtz" case ($\varepsilon = 0$). Working in the Helmholtz "energy" inner product, we prove a robust upper bound on the norm of the preconditioned matrix, valid for all $\varepsilon, \delta$. Under additional conditions on $\varepsilon$ and $\delta$, we also prove a strictly-positive lower bound on the distance of the field of values of the preconditioned matrix from the origin. Using these results, combined with previous results of [M.J. Gander, I.G. Graham and E.A. Spence, Numer. Math. 131(3), 567-614, 2015] we obtain theoretical support for the observed robustness of the preconditioner for the pure Helmholtz problem with increasing wavenumber $k$.

[1]  Cornelis Vuik,et al.  On the convergence of shifted Laplace preconditioner combined with multilevel deflation , 2013, Numer. Linear Algebra Appl..

[2]  Lexing Ying,et al.  Additive Sweeping Preconditioner for the Helmholtz Equation , 2015, Multiscale Model. Simul..

[3]  Martin J. Gander,et al.  Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[4]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[5]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[6]  A. Moiola Trefftz-discontinuous Galerkin methods for time-harmonic wave problems , 2011 .

[7]  Domenico Lahaye,et al.  Modern Solvers for Helmholtz Problems , 2017 .

[8]  Pierre-Henri Tournier,et al.  A two-level domain-decomposition preconditioner for the time-harmonic maxwell’s equations , 2017, CSE 2018.

[9]  Christiaan C. Stolk,et al.  A rapidly converging domain decomposition method for the Helmholtz equation , 2012, J. Comput. Phys..

[10]  J. Schöberl,et al.  Hybrid Domain Decomposition Solvers for the Helmholtz Equation , 2014 .

[11]  Jens Markus Melenk,et al.  Approximation of the high-frequency Helmholtz kernel by nested directional interpolation: error analysis , 2015, Numerische Mathematik.

[12]  Laurent Demanet,et al.  The method of polarized traces for the 2D Helmholtz equation , 2014, J. Comput. Phys..

[13]  Bruno Després,et al.  A Domain Decomposition Method for the Helmholtz equation and related Optimal Control Problems , 1996 .

[14]  C. Vuik,et al.  Scalable Convergence Using Two-Level Deflation Preconditioning for the Helmholtz Equation , 2020, SIAM J. Sci. Comput..

[15]  Haijun Wu,et al.  Preasymptotic Error Analysis of Higher Order FEM and CIP-FEM for Helmholtz Equation with High Wave Number , 2014, SIAM J. Numer. Anal..

[16]  Marcus Sarkis,et al.  Restricted Overlapping Balancing Domain Decomposition Methods and Restricted Coarse Problems for the Helmholtz Problem , 2007 .

[17]  Cornelis Vuik,et al.  On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .

[18]  Martin J. Gander,et al.  A Class of Iterative Solvers for the Helmholtz Equation: Factorizations, Sweeping Preconditioners, Source Transfer, Single Layer Potentials, Polarized Traces, and Optimized Schwarz Methods , 2016, SIAM Rev..

[19]  Euan A. Spence,et al.  A sharp relative-error bound for the Helmholtz h-FEM at high frequency , 2019, ArXiv.

[20]  Michael B. Giles,et al.  Preconditioned iterative solution of the 2D Helmholtz equation , 2002 .

[21]  Peipei Lu,et al.  A Robust Multilevel Preconditioner Based on a Domain Decomposition Method for the Helmholtz Equation , 2019, Journal of Scientific Computing.

[22]  Charbel Farhat,et al.  A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems , 2000, Numerische Mathematik.

[23]  Martin J. Gander,et al.  How Large a Shift is Needed in the Shifted Helmholtz Preconditioner for its Effective Inversion by Multigrid? , 2017, SIAM J. Sci. Comput..

[24]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[25]  Pierre-Henri Tournier,et al.  Two-Level Preconditioners for the Helmholtz Equation , 2017 .

[26]  Jens Markus Melenk,et al.  Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions , 2010, Math. Comput..

[27]  Hongkai Zhao,et al.  Approximate Separability of Green's Function for High Frequency Helmholtz Equations , 2014 .

[28]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[29]  Martin J. Gander,et al.  Optimized Schwarz Methods with Overlap for the Helmholtz Equation , 2016, SIAM J. Sci. Comput..

[30]  Lexing Ying,et al.  Fast Directional Multilevel Algorithms for Oscillatory Kernels , 2007, SIAM J. Sci. Comput..

[31]  Y. Erlangga,et al.  The Multilevel Krylov-Multigrid Method for the Helmholtz Equation Preconditioned by the Shifted Laplacian , 2017 .

[32]  Victorita Dolean,et al.  An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .

[33]  E. A. Spence,et al.  Recent Results on Domain Decomposition Preconditioning for the High-Frequency Helmholtz Equation Using Absorption , 2017 .

[34]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[35]  Martin J. Gander,et al.  Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed? , 2015, Numerische Mathematik.

[36]  Olof B. Widlund,et al.  Domain Decomposition Algorithms for Indefinite Elliptic Problems , 2017, SIAM J. Sci. Comput..

[37]  Eero Vainikko,et al.  Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption , 2015, Math. Comput..

[38]  Jens Markus Melenk,et al.  Wavenumber Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation , 2011, SIAM J. Numer. Anal..

[39]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[40]  Lili Ju,et al.  An Additive Overlapping Domain Decomposition Method for the Helmholtz Equation , 2019, SIAM J. Sci. Comput..

[41]  I. Babuska,et al.  Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation , 1995 .

[42]  Per-Gunnar Martinsson,et al.  A fast direct solver for scattering problems involving elongated structures , 2007, J. Comput. Phys..

[43]  Cornelis Vuik,et al.  Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..

[44]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[45]  Cornelis Vuik,et al.  Accelerating the shifted Laplace preconditioner for the Helmholtz equation by multilevel deflation , 2016, J. Comput. Phys..

[46]  Ivan G. Graham,et al.  Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations with absorption , 2017, Math. Comput..

[47]  A. Bayliss,et al.  An Iterative method for the Helmholtz equation , 1983 .

[48]  Lexing Ying,et al.  Fast Algorithms for High Frequency Wave Propagation , 2012 .

[49]  Lexing Ying,et al.  Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..

[50]  Laurent Demanet,et al.  L-Sweeps: A scalable, parallel preconditioner for the high-frequency Helmholtz equation , 2019, J. Comput. Phys..

[51]  Lexing Ying,et al.  A Parallel Sweeping Preconditioner for Heterogeneous 3D Helmholtz Equations , 2012, SIAM J. Sci. Comput..

[52]  Zhiming Chen,et al.  A Source Transfer Domain Decomposition Method for Helmholtz Equations in Unbounded Domain , 2013, SIAM J. Numer. Anal..

[53]  A. Bayliss,et al.  On accuracy conditions for the numerical computation of waves , 1985 .

[54]  Lexing Ying,et al.  Recursive Sweeping Preconditioner for the Three-Dimensional Helmholtz Equation , 2016, SIAM J. Sci. Comput..

[55]  Joachim Schöberl,et al.  Hybrid Domain Decomposition Solvers for the Helmholtz and the Time Harmonic Maxwell's Equation , 2013, Domain Decomposition Methods in Science and Engineering XX.

[56]  Andrea Moiola,et al.  Is the Helmholtz Equation Really Sign-Indefinite? , 2014, SIAM Rev..

[57]  Ivan G. Graham,et al.  Stability and finite element error analysis for the Helmholtz equation with variable coefficients , 2019, Math. Comput..

[58]  Marcus Sarkis,et al.  Shifted Laplacian RAS Solvers for the Helmholtz Equation , 2013, Domain Decomposition Methods in Science and Engineering XX.