On computing with the Hilbert spline transform
暂无分享,去创建一个
[1] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[2] Kellen Petersen August. Real Analysis , 2009 .
[3] C. D. Boor,et al. Splines as linear combinations of B-splines. A Survey , 1976 .
[4] Sheehan Olver,et al. Computing the Hilbert transform and its inverse , 2011, Math. Comput..
[5] T. Benjamin. Internal waves of permanent form in fluids of great depth , 1967, Journal of Fluid Mechanics.
[6] Kai Diethelm,et al. Uniform convergence of optimal order quadrature rules for Cauchy principal value integrals , 1994 .
[7] S. Jonathan Chapman,et al. Exponential asymptotics and gravity waves , 2006, Journal of Fluid Mechanics.
[8] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[9] Frederick W. King. Hilbert transforms: Hilbert Transforms , 2009 .
[10] M. Powell,et al. Approximation theory and methods , 1984 .
[11] Catterina Dagnino,et al. Spline product quadrature rules for Cauchy singular integrals , 1990 .
[12] David Elliott,et al. Gauss type quadrature rules for Cauchy principal value integrals , 1979 .
[13] C. D. Boor,et al. On Calculating B-splines , 1972 .
[14] Takemitsu Hasegawa,et al. Uniform approximations to finite Hilbert transform and its derivative , 2004 .
[15] A. Palamara Orsi,et al. Spline approximation for Cauchy principal value integrals , 1990 .
[16] Hiroaki Ono. Algebraic Solitary Waves in Stratified Fluids , 1975 .
[17] S. Hahn. Hilbert Transforms in Signal Processing , 1996 .
[18] F. Smithies,et al. Singular Integral Equations , 1977 .
[19] Kai Diethelm,et al. Peano kernels and bounds for the error constants of Gaussian and related quadrature rules for Cauchy principal value integrals , 1996 .
[20] Yuesheng Xu,et al. A B-spline approach for empirical mode decompositions , 2006, Adv. Comput. Math..
[21] C. Micchelli. Mathematical aspects of geometric modeling , 1987 .
[22] Lloyd N. Trefethen,et al. Barycentric Lagrange Interpolation , 2004, SIAM Rev..
[23] Geir T. Helleloid,et al. Numerical evaluation of Hilbert transforms for oscillatory functions: A convergence accelerator approach , 2002 .
[24] S. Marple. Computing the discrete-time 'analytic' signal via FFT , 1997 .
[25] J. A. C. Weideman,et al. Computing the Hilbert transform on the real line , 1995 .
[26] Kai Diethelm,et al. Modified compound quadrature rules for strongly singular integrals , 1994, Computing.
[27] Giuliana Criscuolo,et al. A new algorithm for Cauchy principal value and Hadamard finite-part integrals , 1997 .
[28] Gene H. Golub,et al. Matrix computations , 1983 .
[29] Lihua Yang,et al. A novel method for computing the Hilbert transform with Haar multiresolution approximation , 2009 .
[30] Giovanni Monegato,et al. The numerical evaluation of one-dimensional Cauchy principal value integrals , 1982, Computing.
[31] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[32] Yuesheng Xu,et al. On translation invariant operators which preserve the B-spline recurrence , 2008, Adv. Comput. Math..
[33] F. Smithies,et al. Singular Integral Equations , 1955, The Mathematical Gazette.
[34] J. N. Lyness,et al. Applications of Hilbert Transform Theory to Numerical Quadrature , 1969 .