On computing with the Hilbert spline transform

We develop a fast algorithm for computing the Hilbert transform of a function from a data set consisting of n function values and prove that the complexity of the proposed algorithm is O(n log n). Our point of view is fundamentally based on a B-spline series approximation constructed from available data. In this regard, we obtain new formulas for the Hilbert transform of a B-spline as a divided difference. For theoretical simplicity and computational efficiency we give a detailed description of our algorithm, as well as provided optimal approximation order, only in the case of quadratic splines. However, if higher accuracy is required, extensions of our method to spline approximation of any prescribed degree readily follows the pattern of the quadratic case. Numerical experiments have confirmed that our algorithm has superior performance than previously available methods which we briefly survey in Section 2.

[1]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[2]  Kellen Petersen August Real Analysis , 2009 .

[3]  C. D. Boor,et al.  Splines as linear combinations of B-splines. A Survey , 1976 .

[4]  Sheehan Olver,et al.  Computing the Hilbert transform and its inverse , 2011, Math. Comput..

[5]  T. Benjamin Internal waves of permanent form in fluids of great depth , 1967, Journal of Fluid Mechanics.

[6]  Kai Diethelm,et al.  Uniform convergence of optimal order quadrature rules for Cauchy principal value integrals , 1994 .

[7]  S. Jonathan Chapman,et al.  Exponential asymptotics and gravity waves , 2006, Journal of Fluid Mechanics.

[8]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[9]  Frederick W. King Hilbert transforms: Hilbert Transforms , 2009 .

[10]  M. Powell,et al.  Approximation theory and methods , 1984 .

[11]  Catterina Dagnino,et al.  Spline product quadrature rules for Cauchy singular integrals , 1990 .

[12]  David Elliott,et al.  Gauss type quadrature rules for Cauchy principal value integrals , 1979 .

[13]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[14]  Takemitsu Hasegawa,et al.  Uniform approximations to finite Hilbert transform and its derivative , 2004 .

[15]  A. Palamara Orsi,et al.  Spline approximation for Cauchy principal value integrals , 1990 .

[16]  Hiroaki Ono Algebraic Solitary Waves in Stratified Fluids , 1975 .

[17]  S. Hahn Hilbert Transforms in Signal Processing , 1996 .

[18]  F. Smithies,et al.  Singular Integral Equations , 1977 .

[19]  Kai Diethelm,et al.  Peano kernels and bounds for the error constants of Gaussian and related quadrature rules for Cauchy principal value integrals , 1996 .

[20]  Yuesheng Xu,et al.  A B-spline approach for empirical mode decompositions , 2006, Adv. Comput. Math..

[21]  C. Micchelli Mathematical aspects of geometric modeling , 1987 .

[22]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[23]  Geir T. Helleloid,et al.  Numerical evaluation of Hilbert transforms for oscillatory functions: A convergence accelerator approach , 2002 .

[24]  S. Marple Computing the discrete-time 'analytic' signal via FFT , 1997 .

[25]  J. A. C. Weideman,et al.  Computing the Hilbert transform on the real line , 1995 .

[26]  Kai Diethelm,et al.  Modified compound quadrature rules for strongly singular integrals , 1994, Computing.

[27]  Giuliana Criscuolo,et al.  A new algorithm for Cauchy principal value and Hadamard finite-part integrals , 1997 .

[28]  Gene H. Golub,et al.  Matrix computations , 1983 .

[29]  Lihua Yang,et al.  A novel method for computing the Hilbert transform with Haar multiresolution approximation , 2009 .

[30]  Giovanni Monegato,et al.  The numerical evaluation of one-dimensional Cauchy principal value integrals , 1982, Computing.

[31]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[32]  Yuesheng Xu,et al.  On translation invariant operators which preserve the B-spline recurrence , 2008, Adv. Comput. Math..

[33]  F. Smithies,et al.  Singular Integral Equations , 1955, The Mathematical Gazette.

[34]  J. N. Lyness,et al.  Applications of Hilbert Transform Theory to Numerical Quadrature , 1969 .