A backward–forward regularization of the Perona–Malik equation

Abstract It is shown that the Perona–Malik equation (PME) admits a natural regularization by forward–backward diffusions possessing better analytical properties than PME itself. Well-posedness of the regularizing problem along with a complete understanding of its long time behavior can be obtained by resorting to weak Young measure valued solutions in the spirit of Kinderlehrer and Pedregal (1992) [1] and Demoulini (1996) [2] . Solutions are unique (to an extent to be specified) but can exhibit “micro-oscillations” (in the sense of minimizing sequences and in the spirit of material science) between “preferred” gradient states. In the limit of vanishing regularization, the preferred gradients have size 0 or ∞ thus explaining the well-known phenomenon of staircasing. The theoretical results do completely confirm and/or predict numerical observations concerning the generic behavior of solutions.

[1]  P. Guidotti A new nonlocal nonlinear diffusion of image processing , 2009 .

[2]  Long-time behaviour of two-phase solutions to a class of forward-backward parabolic equations , 2010 .

[3]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[4]  Pablo Pedregal,et al.  Weak convergence of integrands and the young measure representation , 1992 .

[5]  Massimo Gobbino,et al.  PASSING TO THE LIMIT IN MAXIMAL SLOPE CURVES: FROM A REGULARIZED PERONA-MALIK EQUATION TO THE TOTAL VARIATION FLOW , 2011, 1103.3365.

[6]  Abdelmounim Belahmidi,et al.  Equations aux dérivées partielles appliquées à la restauration et à l'agrandissement des images , 2003 .

[7]  Patrick Guidotti,et al.  A new well-posed nonlinear nonlocal diffusion , 2010 .

[8]  James V. Lambers,et al.  Two New Nonlinear Nonlocal Diffusions for Noise Reduction , 2008, Journal of Mathematical Imaging and Vision.

[9]  Mark Nitzberg,et al.  Nonlinear Image Filtering with Edge and Corner Enhancement , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Satyanad Kichenassamy,et al.  The Perona–Malik Method as an Edge Pruning Algorithm , 2008, Journal of Mathematical Imaging and Vision.

[11]  David Kinderlehrer,et al.  Equilibrium configurations of crystals , 1988 .

[12]  Michel Valdier A course on Young measures , 1994 .

[13]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[14]  Massimo Gobbino,et al.  An Example of Global Classical Solution for the Perona-Malik Equation , 2009, 0907.0772.

[15]  Bernd Kawohl,et al.  Maximum and comparison principle for one-dimensional anisotropic diffusion , 1998 .

[16]  Sophia Demoulini,et al.  Young measure solutions for a nonlinear parabolic equation of forward-backward type , 1996 .

[17]  G. I. Barenblatt,et al.  A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow , 1993 .

[18]  G. Bellettini,et al.  The $\Gamma $-limit and the related gradient flow for singular perturbation functionals of Perona-Malik type , 2008 .

[19]  Kewei Zhang,et al.  Existence of infinitely many solutions for the one-dimensional Perona-Malik model , 2006 .

[20]  Flavia Smarrazzo,et al.  Long-Time Behavior of Solutions to a Class of Forward-Backward Parabolic Equations , 2010, SIAM J. Math. Anal..

[21]  Massimo Gobbino,et al.  Entire Solutions of the One-Dimensional Perona-Malik Equation , 2007 .

[22]  Satyanad Kichenassamy,et al.  The Perona-Malik Paradox , 1997, SIAM J. Appl. Math..

[23]  Classification of equilibria and Γ-convergence for the discrete Perona-Malik functional , 2009 .

[24]  Dirk Horstmann,et al.  Aggregation under local reinforcement: From lattice to continuum , 2004, European Journal of Applied Mathematics.

[25]  Herbert Amann,et al.  Time-delayed Perona-Malik type problems , 2007 .

[26]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Maurizio Paolini,et al.  Convergence for long-times of a semidiscrete Perona-Malik equation in one dimension , 2011 .

[28]  A. Visintin Forward–backward parabolic equations and hysteresis , 2002 .

[29]  G. Cottet,et al.  Image processing through reaction combined with nonlinear diffusion , 1993 .

[30]  Kewei Zhang,et al.  Young measure solutions and instability of the one-dimensional Perona–Malik equation , 2005 .

[31]  Spencer Frei,et al.  Weak convergence methods for nonlinear partial differential equations , 2012 .

[32]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[33]  Massimo Gobbino,et al.  A class of local classical solutions for the one-dimensional Perona-Malik equation , 2009 .

[34]  J. Moser A Harnack inequality for parabolic di2erential equations , 1964 .

[35]  Georges-Henri Cottet,et al.  A Volterra type model for image processing , 1998, IEEE Trans. Image Process..

[36]  S. Esedoglu An analysis of the Perona‐Malik scheme , 2001 .

[37]  Massimo Gobbino,et al.  Gradient estimates for the Perona–Malik equation , 2007 .

[38]  Antonin Chambolle,et al.  Time-delay regularization of anisotropic diffusion and image processing , 2005 .

[39]  J. Moser Correetion to “A Harnack Inequality for Parabolic Differential Equations” , 1967 .

[40]  Padrón Victor,et al.  SOBOLEV REGULARIZATION OF A NONLINEAR ILL-POSED PARABOLIC PROBLEM AS A MODEL FOR AGGREGATING POPULATIONS , 1998 .