Further results on entanglement detection and quantification from the correlation matrix criterion

The correlation matrix (CM) criterion is a recently derived powerful sufficient condition for the presence of entanglement in bipartite quantum states of arbitrary dimensions. It has been shown that it can be stronger than the positive partial transpose (PPT) criterion, as well as the computable cross norm or realignment (CCNR) criterion in different situations. However, it remained as an open question whether there existed sets of states for which the CM criterion could be stronger than both criteria simultaneously. Here, we give an affirmative answer to this question by providing examples of entangled states that scape detection by both the PPT and CCNR criteria whose entanglement is revealed by the CM condition. We also show that the CM can be used to measure the entanglement of pure states and obtain lower bounds for the entanglement measure known as tangle for general (mixed) states.

[1]  Julio I. De Vicente,et al.  Separability criteria based on the bloch representation of density matrices , 2006, Quantum Inf. Comput..

[2]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[3]  C. Caves,et al.  Concurrence-based entanglement measures for isotropic states , 2003 .

[4]  M. Kus,et al.  Measures and dynamics of entangled states , 2005, quant-ph/0505162.

[5]  Oliver Rudolph Further Results on the Cross Norm Criterion for Separability , 2005, Quantum Inf. Process..

[6]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[7]  G. Milburn,et al.  Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.

[8]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[9]  C. Kothe,et al.  Entanglement quantification through local observable correlations , 2006, quant-ph/0608041.

[10]  J. Cirac,et al.  Optimization of entanglement witnesses , 2000, quant-ph/0005014.

[11]  State space structure and entanglement of rotationally invariant spin systems , 2005, quant-ph/0506224.

[12]  T. Osborne Entanglement measure for rank-2 mixed states , 2002, quant-ph/0203087.

[13]  Guang-Can Guo,et al.  Optimal entanglement witnesses based on local orthogonal observables , 2007, 0705.1832.

[14]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[15]  M. Horodecki,et al.  BOUND ENTANGLEMENT CAN BE ACTIVATED , 1998, quant-ph/9806058.

[16]  S. Fei,et al.  Concurrence of arbitrary dimensional bipartite quantum states. , 2005, Physical review letters.

[17]  R. Augusiak,et al.  Rotationally invariant bipartite states and bound entanglement , 2007, quant-ph/0701222.

[18]  Lawrence M. Ioannou,et al.  Computational complexity of the quantum separability problem , 2006, Quantum Inf. Comput..

[19]  O. Gühne Characterizing entanglement via uncertainty relations. , 2003, Physical review letters.

[20]  S. Fei,et al.  A note on invariants and entanglements , 2001, quant-ph/0109073.

[21]  S. Fei,et al.  Entanglement of formation of bipartite quantum states. , 2005, Physical review letters.

[22]  D. Bruß,et al.  Construction of quantum states with bound entanglement , 1999, quant-ph/9911056.

[23]  Jan Myrheim,et al.  Geometrical aspects of entanglement , 2006 .

[24]  C. H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[25]  P. Shor,et al.  Unextendible Product Bases, Uncompletable Product Bases and Bound Entanglement , 1999, quant-ph/9908070.

[26]  O. Gühne,et al.  Covariance matrices and the separability problem. , 2006, Physical review letters.

[27]  U. Fano,et al.  Pairs of two-level systems , 1983 .

[28]  G. Tóth,et al.  Entanglement criteria based on local uncertainty relations are strictly stronger than the computable cross norm criterion , 2006, quant-ph/0604050.

[29]  B. Moor,et al.  Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.

[30]  Heinz-Peter Breuer Separability criteria and bounds for entanglement measures , 2006 .

[31]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[32]  Florian Mintert Concurrence via entanglement witnesses , 2006 .

[33]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[34]  J. Eberly,et al.  N-Level Coherence Vector and Higher Conservation Laws in Quantum Optics and Quantum Mechanics , 1981 .

[35]  T. Tarn,et al.  Quasimultipartite entanglement measure based on quadratic functions , 2005, quant-ph/0512256.

[36]  H. Hofmann,et al.  Violation of local uncertainty relations as a signature of entanglement , 2002, quant-ph/0212090.

[37]  M. B. Plenio,et al.  When are correlations quantum?—verification and quantification of entanglement by simple measurements , 2006 .

[38]  T. Tarn,et al.  Analytically solvable two-qubit entanglement monotone , 2007 .

[39]  Ling-An Wu,et al.  A matrix realignment method for recognizing entanglement , 2003, Quantum Inf. Comput..

[40]  Julio I. de Vicente,et al.  Lower bounds on concurrence and separability conditions , 2006, quant-ph/0611229.

[41]  O. Gühne,et al.  Estimating entanglement measures in experiments. , 2006, Physical review letters.

[42]  Michał Horodecki,et al.  Separability of Mixed Quantum States: Linear Contractions and Permutation Criteria , 2006, Open Syst. Inf. Dyn..

[43]  Jens Eisert,et al.  Quantitative entanglement witnesses , 2006, quant-ph/0607167.

[44]  Animesh Datta,et al.  Constrained bounds on measures of entanglement , 2007 .