High-resolution network biology: connecting sequence with function

Proteins are not monolithic entities; rather, they can contain multiple domains that mediate distinct interactions, and their functionality can be regulated through post-translational modifications at multiple distinct sites. Traditionally, network biology has ignored such properties of proteins and has instead examined either the physical interactions of whole proteins or the consequences of removing entire genes. In this Review, we discuss experimental and computational methods to increase the resolution of protein–protein, genetic and drug–gene interaction studies to the domain and residue levels. Such work will be crucial for using interaction networks to connect sequence and structural information, and to understand the biological consequences of disease-associated mutations, which will hopefully lead to more effective therapeutic strategies.

[1]  M. Nilges,et al.  Detailed structural and assembly model of the type II secretion pilus from sparse data , 2010, Proceedings of the National Academy of Sciences.

[2]  A. Emili,et al.  Global Functional Atlas of Escherichia coli Encompassing Previously Uncharacterized Proteins , 2009, PLoS biology.

[3]  J. Bader,et al.  HistoneHits: a database for histone mutations and their phenotypes. , 2009, Genome research.

[4]  Trey Ideker,et al.  Integrating physical and genetic maps: from genomes to interaction networks , 2007, Nature Reviews Genetics.

[5]  A. Fraser,et al.  Predicting genetic modifier loci using functional gene networks. , 2010, Genome research.

[6]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[7]  E. Marcotte,et al.  It's the machine that matters: Predicting gene function and phenotype from protein networks. , 2010, Journal of proteomics.

[8]  Wolfgang Huber,et al.  Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping , 2013, Nature Methods.

[9]  H. Lehrach,et al.  A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. , 2004, Molecular cell.

[10]  Christie S. Chang,et al.  The BioGRID interaction database: 2013 update , 2012, Nucleic Acids Res..

[11]  Charles Boone,et al.  A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Huiming Ding,et al.  eSGA: E. coli synthetic genetic array analysis , 2008, Nature Methods.

[13]  William Stafford Noble,et al.  Learning to predict protein-protein interactions from protein sequences , 2003, Bioinform..

[14]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[15]  Nevan J Krogan,et al.  Quantitative genetic interaction mapping using the E-MAP approach. , 2010, Methods in enzymology.

[16]  Lilia M. Iakoucheva,et al.  A Protein Domain-Based Interactome Network for C. elegans Early Embryogenesis , 2008, Cell.

[17]  Derek Greene,et al.  Missing value imputation for epistatic MAPs , 2010, BMC Bioinformatics.

[18]  Sourav Bandyopadhyay,et al.  Quantitative genetic-interaction mapping in mammalian cells , 2013, Nature Methods.

[19]  Trey Ideker,et al.  Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data , 2008, PLoS Comput. Biol..

[20]  Gary D Bader,et al.  Domain‐mediated protein interaction prediction: From genome to network , 2012, FEBS letters.

[21]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[22]  Martijn A. Huynen,et al.  Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets , 2013, Nature Communications.

[23]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[24]  Kelly M. Thayer,et al.  Analyses of the effects of all ubiquitin point mutants on yeast growth rate. , 2013, Journal of molecular biology.

[25]  Gary D Bader,et al.  The Genetic Landscape of a Cell , 2010, Science.

[26]  T. Furey ChIP – seq and beyond : new and improved methodologies to detect and characterize protein – DNA interactions , 2012 .

[27]  Andrew Emili,et al.  eSGA: E. coli Synthetic Genetic Array analysis , 2008 .

[28]  Andrej Sali,et al.  Inferential optimization for simultaneous fitting of multiple components into a CryoEM map of their assembly. , 2009, Journal of molecular biology.

[29]  O. Troyanskaya,et al.  Modeling complex genetic interactions in a simple eukaryotic genome: actin displays a rich spectrum of complex haploinsufficiencies. , 2007, Genes & development.

[30]  A. Bateman,et al.  Protein interactions in human genetic diseases , 2008, Genome Biology.

[31]  M. Vidal,et al.  Edgetic perturbation models of human inherited disorders , 2009, Molecular systems biology.

[32]  Andrej Sali,et al.  Integrative Structural Biology , 2013, Science.

[33]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[34]  T. Pawson,et al.  Assembly of Cell Regulatory Systems Through Protein Interaction Domains , 2003, Science.

[35]  M. Mann,et al.  A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly , 2011, Nature Cell Biology.

[36]  Nevan J Krogan,et al.  Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action , 2010, Molecular systems biology.

[37]  Kriston L. McGary,et al.  Broad network-based predictability of Saccharomyces cerevisiae gene loss-of-function phenotypes , 2007, Genome Biology.

[38]  W. Lim,et al.  Systematic Functional Prioritization of Protein Posttranslational Modifications , 2012, Cell.

[39]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[40]  B. Honig,et al.  Structure-based prediction of protein-protein interactions on a genome-wide scale , 2012, Nature.

[41]  M. Vignali,et al.  A protein interaction network of the malaria parasite Plasmodium falciparum , 2005, Nature.

[42]  N. Krogan,et al.  Key Functional Regions in the Histone Variant H2A.Z C-Terminal Docking Domain , 2011, Molecular and Cellular Biology.

[43]  William C Hahn,et al.  Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. , 2003, Cancer cell.

[44]  S. Mooney,et al.  A Genome-Scale RNA–Interference Screen Identifies RRAS Signaling as a Pathologic Feature of Huntington's Disease , 2012, PLoS genetics.

[45]  M. Vidal,et al.  Edgetic perturbation of a C. elegans BCL2 ortholog , 2009, Nature Methods.

[46]  R. Aebersold,et al.  Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach , 2012, Proceedings of the National Academy of Sciences.

[47]  C. A. Leanna,et al.  The reverse two-hybrid system: a genetic scheme for selection against specific protein/protein interactions. , 1996, Nucleic acids research.

[48]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[49]  Gary D. Bader,et al.  DRYGIN: a database of quantitative genetic interaction networks in yeast , 2009, Nucleic Acids Res..

[50]  Sean R. Collins,et al.  A tool-kit for high-throughput, quantitative analyses of genetic interactions in E. coli , 2008, Nature Methods.

[51]  Ryan D. Hernandez,et al.  Population Genetics of Rare Variants and Complex Diseases , 2013, Human Heredity.

[52]  P. Bork,et al.  Structure-Based Assembly of Protein Complexes in Yeast , 2004, Science.

[53]  L. Du,et al.  Global fitness profiling of fission yeast deletion strains by barcode sequencing , 2010, Genome Biology.

[54]  F. Holstege,et al.  A high resolution protein interaction map of the yeast Mediator complex. , 2004, Nucleic acids research.

[55]  Joshua M. Stuart,et al.  A global analysis of genetic interactions in Caenorhabditis elegans , 2007, Journal of biology.

[56]  Sean R. Collins,et al.  Hierarchical modularity and the evolution of genetic interactomes across species. , 2012, Molecular cell.

[57]  K. Gunsalus,et al.  Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network , 2009, Nature Methods.

[58]  A. Iafrate,et al.  Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling , 2007, Proceedings of the National Academy of Sciences.

[59]  M. Vidal,et al.  Protein-protein interactions and networks: forward and reverse edgetics. , 2011, Methods in molecular biology.

[60]  Robert D. Finn,et al.  iPfam: visualization of protein?Cprotein interactions in PDB at domain and amino acid resolutions , 2005, Bioinform..

[61]  J. Bader,et al.  Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK , 2011, Nature.

[62]  A. Emili,et al.  An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe , 2009, Nature Structural &Molecular Biology.

[63]  Christopher J. Lee,et al.  Inferring protein domain interactions from databases of interacting proteins , 2005, Genome Biology.

[64]  B. Stillman,et al.  PCNA connects DNA replication to epigenetic inheritance in yeast , 2000, Nature.

[65]  T. Ideker,et al.  Integrative approaches for finding modular structure in biological networks , 2013, Nature Reviews Genetics.

[66]  Grant W. Brown,et al.  Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways , 2004, Nature Biotechnology.

[67]  Michael J. Emanuele,et al.  A Genome-wide RNAi Screen Identifies Multiple Synthetic Lethal Interactions with the Ras Oncogene , 2009, Cell.

[68]  P. Phillips Epistasis — the essential role of gene interactions in the structure and evolution of genetic systems , 2008, Nature Reviews Genetics.

[69]  W. Kaelin The Concept of Synthetic Lethality in the Context of Anticancer Therapy , 2005, Nature Reviews Cancer.

[70]  Benjamin P. Roscoe,et al.  Fitness analyses of all possible point mutations for regions of genes in yeast , 2012, Nature Protocols.

[71]  P. Bork,et al.  Systematic Discovery of In Vivo Phosphorylation Networks , 2007, Cell.

[72]  L. Staudt,et al.  Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells , 2010, Oncogene.

[73]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[74]  Robert P. St.Onge,et al.  The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes , 2008, Science.

[75]  M. Vidal,et al.  Literature-curated protein interaction datasets , 2009, Nature Methods.

[76]  angesichts der Corona-Pandemie,et al.  UPDATE , 1973, The Lancet.

[77]  N. Krogan,et al.  Individual Lysine Acetylations on the N Terminus of Saccharomyces cerevisiae H2A.Z Are Highly but Not Differentially Regulated* , 2010, The Journal of Biological Chemistry.

[78]  Nevan J. Krogan,et al.  Quantitative Genetic Interactions Reveal Biological Modularity , 2010, Cell.

[79]  Boris N. Kholodenko,et al.  Signalling ballet in space and time , 2010, Nature Reviews Molecular Cell Biology.

[80]  N. Hacohen,et al.  A Physical and Regulatory Map of Host-Influenza Interactions Reveals Pathways in H1N1 Infection , 2009, Cell.

[81]  J. Wojcik,et al.  The protein–protein interaction map of Helicobacter pylori , 2001, Nature.

[82]  Wolfgang Huber,et al.  Mapping of signaling networks through synthetic genetic interaction analysis by RNAi , 2011, Nature Methods.

[83]  Joseph Christmas,et al.  The Decade and beyond , 1991 .

[84]  C. Prieto,et al.  Structural domain–domain interactions: Assessment and comparison with protein–protein interaction data to improve the interactome , 2010, Proteins.

[85]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[86]  H. Shih,et al.  A positive genetic selection for disrupting protein-protein interactions: identification of CREB mutations that prevent association with the coactivator CBP. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Sean R. Collins,et al.  Site-specific acetylation mark on an essential chromatin-remodeling complex promotes resistance to replication stress , 2011, Proceedings of the National Academy of Sciences.

[88]  Kerry Bloom,et al.  Systematic triple-mutant analysis uncovers functional connectivity between pathways involved in chromosome regulation. , 2013, Cell reports.

[89]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[90]  P. Legrain,et al.  Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens , 1997, Nature Genetics.

[91]  T. Ideker,et al.  Differential network biology , 2012, Molecular systems biology.

[92]  Daniel S. Yuan,et al.  Probing Nucleosome Function: A Highly Versatile Library of Synthetic Histone H3 and H4 Mutants , 2008, Cell.

[93]  Gabriel C Lander,et al.  Go hybrid: EM, crystallography, and beyond. , 2012, Current opinion in structural biology.

[94]  Philip M. Kim,et al.  Relating Three-Dimensional Structures to Protein Networks Provides Evolutionary Insights , 2006, Science.

[95]  Ben S. Wittner,et al.  Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 , 2009, Nature.

[96]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[97]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2012 update , 2011, Nucleic Acids Res..

[98]  Gabor T. Marth,et al.  Demographic history and rare allele sharing among human populations , 2011, Proceedings of the National Academy of Sciences.

[99]  C. Landry,et al.  An in Vivo Map of the Yeast Protein Interactome , 2008, Science.

[100]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[101]  Kevin Kim,et al.  A TALEN genome-editing system for generating human stem cell-based disease models. , 2013, Cell stem cell.

[102]  D. Koller,et al.  InSite: a computational method for identifying protein-protein interaction binding sites on a proteome-wide scale , 2007, Genome Biology.

[103]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[104]  Ben M. Webb,et al.  Putting the Pieces Together: Integrative Modeling Platform Software for Structure Determination of Macromolecular Assemblies , 2012, PLoS biology.

[105]  Janghoo Lim,et al.  Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1 , 2008, Nature.

[106]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[107]  Kara Dolinski,et al.  The BioGRID Interaction Database: 2011 update , 2010, Nucleic Acids Res..

[108]  Julian Mintseris,et al.  A Protein Complex Network of Drosophila melanogaster , 2011, Cell.

[109]  T. Umehara,et al.  Global analysis of functional surfaces of core histones with comprehensive point mutants , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[110]  Nevan J Krogan,et al.  High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe , 2007, Nature Methods.

[111]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[112]  A. Emili,et al.  Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways , 2011, PLoS genetics.

[113]  N. Krogan,et al.  Mec1/Tel1 Phosphorylation of the INO80 Chromatin Remodeling Complex Influences DNA Damage Checkpoint Responses , 2007, Cell.

[114]  M. Vidal,et al.  Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[115]  Huiming Ding,et al.  The synthetic genetic interaction spectrum of essential genes , 2005, Nature Genetics.

[116]  A. Shilatifard,et al.  A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation , 2008, Nature Structural &Molecular Biology.

[117]  M. Vidal,et al.  Comparative analysis of virus-host interactomes with a mammalian high-throughput protein complementation assay based on Gaussia princeps luciferase. , 2012, Methods.

[118]  M. Mann,et al.  Decoding signalling networks by mass spectrometry-based proteomics , 2010, Nature Reviews Molecular Cell Biology.

[119]  John H. Morris,et al.  Global landscape of HIV–human protein complexes , 2011, Nature.

[120]  Guy Karlebach,et al.  Modelling and analysis of gene regulatory networks , 2008, Nature Reviews Molecular Cell Biology.

[121]  J. Mesirov,et al.  Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer , 2011, Proceedings of the National Academy of Sciences.

[122]  T. Ideker,et al.  Modeling cellular machinery through biological network comparison , 2006, Nature Biotechnology.

[123]  Nevan J. Krogan,et al.  From systems to structure: bridging networks and mechanism. , 2013, Molecular cell.

[124]  S. L. Wong,et al.  Combining biological networks to predict genetic interactions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[125]  P. Burgers,et al.  A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair , 1995, Molecular and cellular biology.

[126]  C. Bakal,et al.  Phosphorylation Networks Regulating JNK Activity in Diverse Genetic Backgrounds , 2008, Science.

[127]  Xiangxue Wang An Integrative Multi-Network and Multi-Classifier Approach to Predict Genetic Interactions , 2015 .

[128]  V. Rotter,et al.  Mutant p53 gain-of-function in cancer. , 2010, Cold Spring Harbor perspectives in biology.

[129]  Gary D Bader,et al.  Analyzing yeast protein–protein interaction data obtained from different sources , 2002, Nature Biotechnology.

[130]  J. Benschop,et al.  From Structure to Systems: High-Resolution, Quantitative Genetic Analysis of RNA Polymerase II , 2013, Cell.

[131]  Albert-László Barabási,et al.  Scale-Free Networks: A Decade and Beyond , 2009, Science.

[132]  A. Ashworth,et al.  Genetic Interactions in Cancer Progression and Treatment , 2011, Cell.

[133]  Daphne Koller,et al.  Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action , 2010, Genome Biology.

[134]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[135]  Frank Alber,et al.  Integrating diverse data for structure determination of macromolecular assemblies. , 2008, Annual review of biochemistry.

[136]  M. Gerstein,et al.  A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data , 2003, Science.

[137]  J. Lawrence,et al.  The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules , 2011, Nature Structural &Molecular Biology.

[138]  N. Krogan,et al.  RNA Polymerase II Carboxyl-terminal Domain Phosphorylation Regulates Protein Stability of the Set2 Methyltransferase and Histone H3 Di- and Trimethylation at Lysine 36* , 2011, The Journal of Biological Chemistry.

[139]  D. Durocher,et al.  Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes , 2008, Proceedings of the National Academy of Sciences.

[140]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[141]  Grant W. Brown,et al.  Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map , 2007, Nature.

[142]  Sean R. Collins,et al.  Conservation and Rewiring of Functional Modules Revealed by an Epistasis Map in Fission Yeast , 2008, Science.

[143]  David Botstein,et al.  Defining protein interactions with yeast actin in vivo , 1995, Nature Structural Biology.

[144]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[145]  R. Sharan,et al.  Network-based prediction of protein function , 2007, Molecular systems biology.

[146]  Andrei L. Turinsky,et al.  A Census of Human Soluble Protein Complexes , 2012, Cell.

[147]  Travis J Cohoon,et al.  Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. , 2013, Cancer cell.

[148]  Sean R. Collins,et al.  A comprehensive strategy enabling high-resolution functional analysis of the yeast genome , 2008, Nature Methods.

[149]  A. Fraser,et al.  Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways , 2006, Nature Genetics.

[150]  B. Chait,et al.  The molecular architecture of the nuclear pore complex , 2007, Nature.

[151]  K. Dolinski,et al.  Systematic curation of protein and genetic interaction data for computable biology , 2013, BMC Biology.

[152]  T. Hughes,et al.  Exploration of Essential Gene Functions via Titratable Promoter Alleles , 2004, Cell.

[153]  James Vlasblom,et al.  Challenges and Rewards of Interaction Proteomics * , 2009, Molecular & Cellular Proteomics.

[154]  Manolis Kellis,et al.  Interpreting noncoding genetic variation in complex traits and human disease , 2012, Nature Biotechnology.

[155]  Sailu Yellaboina,et al.  DOMINE: a comprehensive collection of known and predicted domain-domain interactions , 2010, Nucleic Acids Res..

[156]  M. Vidal,et al.  Protein interaction mapping in C. elegans using proteins involved in vulval development. , 2000, Science.

[157]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[158]  S. Ramaswamy,et al.  Systematic identification of genomic markers of drug sensitivity in cancer cells , 2012, Nature.

[159]  Michael T. McManus,et al.  A Systematic Mammalian Genetic Interaction Map Reveals Pathways Underlying Ricin Susceptibility , 2013, Cell.

[160]  Haiyuan Yu,et al.  Three-dimensional reconstruction of protein networks provides insight into human genetic disease , 2012, Nature Biotechnology.