Some sufficient spectral conditions on Hamilton-connected and traceable graphs

In this paper, we establish some sufficient conditions for a graph to be Hamilton-connected in terms of the edge number, the spectral radius and the signless Laplacian spectral radius of the graph. Furthermore, we also give some sufficient conditions for a graph to be traceable from every vertex in terms of the edge number, the spectral radius and the signless Laplacian spectral radius.

[1]  D. Cvetkovic,et al.  An Introduction to the Theory of Graph Spectra: References , 2009 .

[2]  Virgil D. Gligor,et al.  Random intersection graphs and their applications in security, wireless communication, and social networks , 2015, ArXiv.

[3]  Yi-Zheng Fan,et al.  Spectral Conditions for a Graph to be Hamilton-Connected , 2012, 1207.6447.

[4]  Vladimir Nikiforov,et al.  Spectral radius and Hamiltonicity of graphs , 2009, 0903.5353.

[5]  Bo Ning,et al.  Spectral radius and Hamiltonian properties of graphs , 2013, 1309.0217.

[6]  H. Yuan A bound on the spectral radius of graphs , 1988 .

[7]  Huiqing Liu,et al.  Spectral radius and Hamiltonian graphs , 2012 .

[8]  Lihua Feng,et al.  ON THREE CONJECTURES INVOLVING THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS , 2009 .

[9]  Hong Huang,et al.  A series of Hamiltonian cycle-based solutions to provide simple and scalable mesh optical network resilience , 2002 .

[10]  Steve Butler,et al.  Small Spectral Gap in the Combinatorial Laplacian Implies Hamiltonian , 2010 .

[11]  M. Marsili,et al.  Loops of any size and Hamilton cycles in random scale-free networks , 2005, cond-mat/0502552.

[12]  V. Nikiforov Some new results in extremal graph theory , 2011, 1107.1121.

[13]  Bo Zhou,et al.  Signless Laplacian spectral radius and Hamiltonicity , 2010 .

[14]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[15]  Ruifang Liu,et al.  Sufficient spectral conditions on Hamiltonian and traceable graphs , 2014, 1412.5273.

[16]  Sarah Rothstein,et al.  An Introduction To The Theory Of Graph Spectra , 2016 .

[17]  Jia-Bao Liu,et al.  Asymptotic Laplacian-energy-like invariant of lattices , 2014, Appl. Math. Comput..

[18]  Jinde Cao,et al.  A note on ‘some physical and chemical indices of clique-inserted lattices’ , 2014 .

[19]  Jinde Cao,et al.  Signless Laplacian Spectral Conditions for Hamiltonicity of Graphs , 2014, J. Appl. Math..

[20]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[21]  Jia-Bao Liu,et al.  Asymptotic incidence energy of lattices , 2015 .

[22]  Yi-Zheng Fan,et al.  Spectral Condition for a Graph to be Hamiltonian with respect to Normalized Laplacian , 2012 .

[23]  Rao Li Signless Laplacian Spectral Radius and Some Hamiltonian Properties of Graphs , 2015 .