Carbonaceous chondrites as bioengineered comets

The discovery of microfossils on carbonaceous meteorites has electrified the public with the first concrete evidence of extraterrestrial biology. But how these organisms colonized and grew on the parent body–the comet–remains a mystery. We report on several features of cyanobacteria that permit them to bioengineer comets, as well as a tantalizing look at interplanetary uses for magnetite framboids that are found in abundance on carbonaceous chondrites. We argue that these structures provide important directionality and energy harvesting features similar to magnetotactic bacteria found on Earth.

[1]  P A Midgley,et al.  Magnetite morphology and life on Mars , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Dirk Schumann,et al.  Gigantism in unique biogenic magnetite at the Paleocene–Eocene Thermal Maximum , 2008, Proceedings of the National Academy of Sciences.

[3]  R. Kopp,et al.  The identification and biogeochemical interpretation of fossil magnetotactic bacteria , 2008 .

[4]  Robert B. Sheldon,et al.  Cosmological evolution: spatial relativity and the speed of life , 2008, Optical Engineering + Applications.

[5]  Robert B. Sheldon,et al.  Evidence for liquid water on comets , 2005, SPIE Optics + Photonics.

[6]  J. Kirschvink,et al.  Magnetite-based magnetoreception , 2001, Current Opinion in Neurobiology.

[7]  Hisao Satoh,et al.  Magnetite 3D colloidal crystals formed in the early solar system 4.6 billion years ago. , 2011, Journal of the American Chemical Society.

[8]  R. Wollast,et al.  Search for Magnetite in Lunar Rocks and Fines , 1970, Science.

[9]  Karl Fabian,et al.  On the determination of magnetic grain-size distributions of superparamagnetic particle ensembles using the frequency dependence of susceptibility at different temperatures , 2005 .

[10]  H. Lowenstam,et al.  Goethite in Radular Teeth of Recent Marine Gastropods , 1962, Science.

[11]  Aaron Kaplan,et al.  Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria , 2007, The EMBO journal.

[12]  Wei Lin,et al.  Reduced efficiency of magnetotaxis in magnetotactic coccoid bacteria in higher than geomagnetic fields. , 2009, Biophysical journal.

[13]  R. Frankel,et al.  Magnetite and magnetotaxis in algae. , 1986, Biophysical journal.

[14]  J. Romstedt,et al.  Preliminary Results of Magnetic Force Microscopy Studies of Magnetites in the Orgueil Meteorite , 1999 .

[15]  Peter R. Buseck,et al.  MATRICES OF CARBONACEOUS CHONDRITE METEORITES , 1993 .

[16]  J. Lovelock,et al.  Atmospheric homeostasis by and for the biosphere: the gaia hypothesis , 1974 .

[17]  James E. Lovelock,et al.  Atmospheric homeostasis by and for the biosphere: the gaia hypothesis , 1974 .

[18]  Michael R. Hyman,et al.  Magnetite in Carbonaceous Chondrites , 1982 .

[19]  M. Hyman,et al.  Magnetite in CI chondrites , 1983 .

[20]  Joseph L. Kirschvink,et al.  Biogenic Ferrimagnetism: A New Biomagnetism , 1983 .

[21]  J. Kirschvink,et al.  Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. , 2000, Geochimica et cosmochimica acta.

[22]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[23]  J F Kerridge,et al.  Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface , 1979, Science.

[24]  Wyn Williams,et al.  Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: implications for magnetosome crystals , 2009, Journal of The Royal Society Interface.

[25]  J. L. Gould,et al.  Biogenic magnetite as a basis for magnetic field detection in animals. , 1981, Bio Systems.

[26]  Joseph L. Kirschvink,et al.  A quantitative assessment of torque-transducer models for magnetoreception , 2010, Journal of The Royal Society Interface.

[27]  Wyn Williams,et al.  High-temperature magnetic stability of small magnetite particles , 2003 .

[28]  Gilbert V. Levin,et al.  Extant Life on Mars: Resolving the Issues , 2010 .

[29]  David S. McKay,et al.  Life on Mars: new evidence from martian meteorites , 2009, Optical Engineering + Applications.

[30]  M. Hyman,et al.  Magnetite morphologies in the Essebi and Haripura CM chondrites , 1984 .

[31]  Robert B. Sheldon,et al.  Implications of cometary water: deep impact, stardust, and Hyabusa , 2006, SPIE Optics + Photonics.

[32]  Joseph L. Kirschvink,et al.  Mineralization and magnetization of chiton teeth : Paleomagnetic, sedimentologic, and biologic implications of organic magnetite , 1979 .

[33]  Dirk Grundler,et al.  PREFACE: Magnonics Magnonics , 2010 .

[34]  G. Levin,et al.  Viking Labeled Release Biology Experiment: Interim Results , 1976, Science.

[35]  M. Rowe,et al.  SATURATION MAGNETIZATION MEASUREMENTS OF CARBONACEOUS CHONDRITES , 1986 .

[36]  Peter R. Buseck,et al.  Magnetite in carbonaceous chondrites , 1997 .

[37]  G Southam,et al.  A high‐resolution chemical and structural study of framboidal pyrite formed within a low‐temperature bacterial biofilm , 2008, Geobiology.

[38]  Gilbert V. Levin,et al.  Analysis of evidence of Mars life , 2007, 0705.3176.

[39]  Mohan Sankaran,et al.  Magnetic tests for magnetosome chains in Martian meteorite ALH84001. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Damien Faivre,et al.  An integrated approach for determining the origin of magnetite nanoparticles , 2006 .

[41]  Ernst K. Zinner,et al.  Oxygen isotopic compositions of individual mateoritic magnetite grains from carbonaceous chondrites , 1991 .

[42]  David S. McKay,et al.  Origins of magnetite nanocrystals in Martian meteorite ALH84001 , 2009 .

[43]  David Tománek,et al.  Equilibrium structure of ferrofluid aggregates , 2002, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  Bruce Fegley,et al.  Kinetics of gas-Grain Reactions in the Solar Nebula , 2000 .

[45]  Michael Winklhofer,et al.  Magnetic blocking temperatures of magnetite calculated with a three‐dimensional micromagnetic model , 1997 .

[46]  Joseph L. Kirschvink,et al.  Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells , 2012, Proceedings of the National Academy of Sciences.

[47]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[48]  Robert B. Sheldon,et al.  Comets, Information, and the Origin of Life , 2012 .

[49]  Peter R. Buseck,et al.  Unusual forms of magnetite in the Orgueil carbonaceous chondrite , 1998 .

[50]  Joseph L. Kirschvink,et al.  A Seventh Criterion for the Identification of Bacterial Magnetofossils , 2001 .

[51]  Frank E. Huggins,et al.  The role of magnetite in Fischer-Tropsch synthesis , 1994 .

[52]  M. Gounelle,et al.  Magnetite Content and Carbonate Mineralogy as Constraints for Parent Body Hydrothermal Alteration , 2010 .

[53]  R. Hoover,et al.  The cometary biosphere , 2007, SPIE Optical Engineering + Applications.

[54]  Gilbert V. Levin,et al.  Detection of metabolically produced labeled gas - The Viking Mars Lander. , 1972 .

[55]  Joseph L. Kirschvink,et al.  Magnetofossils, the Magnetization of Sediments, and the Evolution of Magnetite Biomineralization , 1989 .

[56]  Ulrike Diebold,et al.  Room temperature water splitting at the surface of magnetite. , 2011, Journal of the American Chemical Society.

[57]  J. Jedwab,et al.  Variations Morphologiques de la Magnétite des Météorites Carbonées d'Alais, Ivuna et Orgueil , 1968 .

[58]  R. Frankel,et al.  Magnetic guidance of organisms. , 1984, Annual review of biophysics and bioengineering.

[59]  R. Frankel,et al.  Magnetosome formation in prokaryotes , 2004, Nature Reviews Microbiology.

[60]  Robert B. Sheldon,et al.  Astrobiology of comets , 2004, SPIE Optics + Photonics.