Induction kinetics of a conditional pH stress response system in Escherichia coli.

The analysis of stress response systems in microorganisms can reveal molecular strategies for regulatory control and adaptation. In this study, we focused on the Cad module, a subsystem of Escherichia coli's response to acidic stress that is conditionally activated at low pH only when lysine is available. When expressed, the Cad system counteracts the elevated H(+) concentration by converting lysine to cadaverine under the consumption of H(+) and exporting cadaverine in exchange for external lysine. Surprisingly, the cad operon displays a transient response, even when the conditions for its induction persist. To quantitatively characterize the regulation of the Cad module, we experimentally recorded and theoretically modeled the dynamics of important system variables. We established a quantitative model that adequately describes and predicts the transient expression behavior for various initial conditions. Our quantitative analysis of the Cad system supports negative feedback by external cadaverine as the origin of the transient response. Furthermore, the analysis puts causal constraints on the precise mechanism of signal transduction via the regulatory protein CadC.

[1]  G. Bennett,et al.  Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH , 1992, Journal of bacteriology.

[2]  H. Lenhoff,et al.  Spectrophotometric assay for lysine decar☐ylase , 1982 .

[3]  W K Maas,et al.  Escherichia coli regulatory mutation affecting lysine transport and lysine decarboxylase , 1980, Journal of bacteriology.

[4]  Arkady B. Khodursky,et al.  Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[6]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[7]  Kirsten Jung,et al.  The membrane‐integrated transcriptional activator CadC of Escherichia coli senses lysine indirectly via the interaction with the lysine permease LysP , 2008, Molecular microbiology.

[8]  John W. Foster,et al.  Escherichia coli acid resistance: tales of an amateur acidophile , 2004, Nature Reviews Microbiology.

[9]  E. Klipp,et al.  Integrative model of the response of yeast to osmotic shock , 2005, Nature Biotechnology.

[10]  J. Foster,et al.  Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhimurium , 1996, Molecular microbiology.

[11]  P. Cash,et al.  Sensing and adapting to acid stress , 2002, Antonie van Leeuwenhoek.

[12]  Kirsten Jung,et al.  Towards an understanding of the molecular mechanisms of stimulus perception and signal transduction by the KdpD/KdpE system of Escherichia coli. , 2002, Journal of molecular microbiology and biotechnology.

[13]  Jeffrey H. Miller A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Rela , 1992 .

[14]  C. W. Tabor,et al.  Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase , 1980, Journal of bacteriology.

[15]  Terence Hwa,et al.  Combinatorial transcriptional control of the lactose operon of Escherichia coli , 2007, Proceedings of the National Academy of Sciences.

[16]  H. Aiba,et al.  Evidence for two functional gal promoters in intact Escherichia coli cells. , 1981, The Journal of biological chemistry.

[17]  M. Neely,et al.  Altered pH lysine signalling mutants of cadC, a gene encoding a membrane‐bound transcriptional activator of the Escherichia coli cadBA operon , 1994, Molecular microbiology.

[18]  Terence Hwa,et al.  Transcriptional regulation by the numbers: models. , 2005, Current opinion in genetics & development.

[19]  E. Fischer,et al.  Purification and physical properties of inducible Escherichia coli lysine decarboxylase. , 1974, Biochemistry.

[20]  A. Camilli,et al.  Acid tolerance of gastrointestinal pathogens. , 2002, Current opinion in microbiology.

[21]  M. Neely,et al.  Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia coli cad operon , 1994, Journal of bacteriology.

[22]  A. Driessen,et al.  Kinetic mechanism and specificity of the arginine-ornithine antiporter of Lactococcus lactis. , 1989, The Journal of biological chemistry.

[23]  Patrice L. Moreau,et al.  The Lysine Decarboxylase CadA Protects Escherichia coli Starved of Phosphate against Fermentation Acids , 2007, Journal of bacteriology.

[24]  H. Bujard,et al.  Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. , 1997, Nucleic acids research.

[25]  M. Neely,et al.  Kinetics of expression of the Escherichia coli cad operon as a function of pH and lysine , 1996, Journal of bacteriology.

[26]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[27]  A. Torres The cad locus of Enterobacteriaceae: more than just lysine decarboxylation. , 2009, Anaerobe.

[28]  I. Booth,et al.  Regulation of cytoplasmic pH in bacteria. , 1985, Microbiological reviews.

[29]  Ronald K. Taylor,et al.  Mutations in toxR and toxSThat Separate Transcriptional Activation from DNA Binding at the Cholera Toxin Gene Promoter , 1998, Journal of bacteriology.

[30]  D. Lane,et al.  Expression of the second lysine decarboxylase gene of Escherichia coli. , 1998, Microbiology.

[31]  M. Ashburner A Laboratory manual , 1989 .

[32]  K. Altendorf,et al.  Cs+ Induces the kdpOperon of Escherichia coli by Lowering the Intracellular K+ Concentration , 2001, Journal of bacteriology.

[33]  John W. Foster,et al.  Escherichia coli Glutamate- and Arginine-Dependent Acid Resistance Systems Increase Internal pH and Reverse Transmembrane Potential , 2004, Journal of bacteriology.

[34]  G. Bennett,et al.  Regulation of the Escherichia coli cad operon: location of a site required for acid induction , 1992, Journal of bacteriology.

[35]  Kirsten Jung,et al.  CadC-Mediated Activation of the cadBA Promoter in Escherichia coli , 2006, Journal of Molecular Microbiology and Biotechnology.

[36]  A. Kuraishi,et al.  Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli , 2004, Molecular microbiology.

[37]  John W. Foster,et al.  Control of Acid Resistance inEscherichia coli , 1999, Journal of bacteriology.

[38]  E. F. Gale,et al.  The effect of the pH of the medium during growth on the enzymic activities of bacteria (Escherichia coli and Micrococcus lysodeikticus) and the biological significance of the changes produced. , 1942, The Biochemical journal.

[39]  H. Berg,et al.  Receptor sensitivity in bacterial chemotaxis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Laub,et al.  Specificity in two-component signal transduction pathways. , 2007, Annual review of genetics.

[41]  Hernan G. Garcia,et al.  Transcriptional Regulation by the Numbers 2: Applications , 2004, q-bio/0412011.

[42]  M Wahde,et al.  Coarse-grained reverse engineering of genetic regulatory networks. , 2000, Bio Systems.

[43]  B. Rosen Basic amino acid transport in Escherichia coli. , 1971, The Journal of biological chemistry.

[44]  J. Kim,et al.  The Membrane-Bound Transcriptional Regulator CadC Is Activated by Proteolytic Cleavage in Response to Acid Stress , 2008, Journal of bacteriology.

[45]  J. Slonczewski,et al.  Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH , 1992, Journal of bacteriology.

[46]  Michael E. Wall,et al.  Model of Transcriptional Activation by MarA in Escherichia coli , 2009, PLoS Comput. Biol..

[47]  W. Epstein,et al.  Potassium Transport Loci in Escherichia coli K-12 , 1971, Journal of bacteriology.

[48]  G. Church,et al.  Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. , 2003, Genome research.

[49]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .