Discrete breathers in nonlinear network models of proteins.

We introduce a topology-based nonlinear network model of protein dynamics with the aim of investigating the interplay of spatial disorder and nonlinearity. We show that spontaneous localization of energy occurs generically and is a site-dependent process. Localized modes of nonlinear origin form spontaneously in the stiffest parts of the structure and display site-dependent activation energies. Our results provide a straightforward way for understanding the recently discovered link between protein local stiffness and enzymatic activity. They strongly suggest that nonlinear phenomena may play an important role in enzyme function, allowing for energy storage during the catalytic process.