Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects

Abstract High concentrations of heavy metals in soil have an adverse effect on micro-organisms and microbial processes. Among soil microorganisms, mycorrhizal fungi are the only ones providing a direct link between soil and roots, and can therefore be of great importance in heavy metal availability and toxicity to plants. This review discusses various aspects of the interactions between heavy metals and mycorrhizal fungi, including the effects of heavy metals on the occurrence of mycorrhizal fungi, heavy metal tolerance in these micro-organisms, and their effect on metal uptake and transfer to plants. Mechanisms involved in metal tolerance, uptake and accumulation by mycorrhizal hyphae and by endo- or ectomycorrhizae are covered. The possible use of mycorrhizal fungi as bioremediation agents in polluted soils or as bioindicators of pollution is also discussed.

[1]  The binding of zinc in root cells of crop plants by phytic acid , 1993 .

[2]  H. Heuwinkel,et al.  Phosphorus deficiency enhances molybdenum uptake by tomato plants , 1992 .

[3]  H. Marschner Mineral Nutrition of Higher Plants , 1988 .

[4]  Sabine Ravnskov,et al.  Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant , 1995 .

[5]  K. Haselwandter Accumulation of the radioactive nuclide 137Cs in fruitbodies of Basidiomycetes. , 1978, Health physics.

[6]  K. Haselwandter Mycorrhizal Fungi: Siderophore Production , 1995 .

[7]  P. Tinker,et al.  A heavy metal-tolerant strain of a mycorrhizal fungus , 1981 .

[8]  H. Sticher,et al.  Interaktionen zwischen VA-Mykorrhizen und Schwermetallbelastungen , 1987 .

[9]  R. Fellner Mycorrhiza-forming fungi as bioindicators of air pollution , 1990 .

[10]  C. Leyval,et al.  Effect of microorganisms on mobility of heavy metals in soils. , 1995 .

[11]  B. Söderström,et al.  Changes in fruitbody production of mycorrhizal and litter decomposing macromycetes in heavy metal polluted coniferous forests in North Sweden , 1990 .

[12]  H. Kneifel,et al.  Notizen: Isolation of Amavadin, a Vanadium Compound Occuring in Amanita Muscaria , 1972 .

[13]  D. Wilkins,et al.  Zinc tolerance of Amanita and Paxillus , 1985 .

[14]  A. Glashof Differential tolerance to Cd and Zn of arbuscular mycorrhizal ( AM ) fungal spores isolated from heavy metal-polluted and unpolluted soils , 2022 .

[15]  W. C. Graustein,et al.  Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum , 1979 .

[16]  T. Dueck,et al.  Vesicular-arbuscular mycorrhizae decrease zinc-toxicity to grasses growing in zinc-polluted soil , 1986 .

[17]  E. Schulze,et al.  Root and Mycorrhizal Development in Healthy and Declining Norway Spruce Stands , 1989 .

[18]  I. Kottke,et al.  Paxillus involutus/Pinus sylvestris Mycorrhizae from Heavily Polluted Forest II. Ultrastructural and Cytochemical Observations , 1994 .

[19]  I. Kottke,et al.  Element Distribution in Mycelium of Pisolithus arrhizus Treated with Cadmium Dust , 1994 .

[20]  I. Kottke,et al.  Element localization in mycorrhizal roots of Pteridium aquilinum (L.) Kuhn collected from experimental plots treated with cadmium dust , 1993 .

[21]  R. Seeger,et al.  Vorkommen von caesium in höheren pilzen , 1981 .

[22]  D. Adriano Trace Elements in the Terrestrial Environment , 1986 .

[23]  D. Wilkins,et al.  Zinc tolerance in Betula spp. IV: The mechanism of ectomycorrhizal amelioration of zinc toxicity , 1987 .

[24]  K. Turnau,et al.  Oxalis acetosella as a Monitoring Plant on Highly Polluted Soils , 1996 .

[25]  A. Jeng,et al.  Chemical and Mineralogical Properties of Norwegian Alum Shale Soils, with Special Emphasis on Heavy Metal Content and Availability , 1992 .

[26]  J. Colpaert,et al.  The effects of cadmium on ectomycorrhizal Pinus sylvestris L. , 1993 .

[27]  I. Kottke,et al.  Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps , 1996 .

[28]  C. Leyval,et al.  Bioavailability of heavy metals and arbuscular mycorrhiza in a sewage-sludge-amended sandy soil , 1995 .

[29]  D. Walters,et al.  Polyamine biosynthesis in the ectomycorrhizal fungus Paxillus involutus exposed to lead , 1996 .

[30]  J. Zak,et al.  Initial vesicular–arbuscular mycorrhizal development of slender wheatgrass on two amended mine spoils , 1982 .

[31]  K. Giller,et al.  Mycorrhizal infection of clover is delayed in soils contaminated with heavy metals from past sewage sludge applications. , 1990 .

[32]  P. Tinker,et al.  INTERACTIONS OF VESICULAR‐ARBUSCULAR MYCORRHIZAL INFECTION AND HEAVY METALS IN PLANTS , 1983 .

[33]  C. Leyval,et al.  Uptake of 109Cd by roots and hyphae of a Glomus mosseae/ Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium , 1997 .

[34]  C. Leyval,et al.  Impact of arbuscular mycorrhizal fungi on plant uptake of heavy metals and radionuclides from soil , 1994 .

[35]  C. Brunold,et al.  Heavy metal binding by mycorrhizal fungi , 1994 .

[36]  E. Steinnes,et al.  Ectomycorrhizal heavy metal accumulation as a contributing factor to heavy metal levels in organic surface soils , 1995 .

[37]  M. L. Beusichem,et al.  Phytochelatin concentrations and binding state of Cd in roots of maize genotypes differing in shoot/root Cd partitioning , 1993 .

[38]  F. Loth,et al.  Einfluß der VA-Mykorrhiza auf die Schwermetallaufnahme von Hafer (Avena sativa L.) in Abhängigkeit vom Kontaminationsgrad der Böden , 1995 .

[39]  D. Read,et al.  The biology of mycorrhiza in the Ericaceae: XVII. The role of mycorrhizal infection in the regulation of iron uptake by ericaceous plants. , 1990, The New phytologist.

[40]  K. Haselwandter,et al.  Fungi as bioindicators of radiocaesium contamination: pre- and post-Chernobyl activities , 1988 .

[41]  I. Ridge,et al.  Fungal slime and its role in the mycorrhizal amelioration of zinc toxicity to higher plants , 1995 .

[42]  J. Fletcher,et al.  Potential use of mycorrhizal fungi as bioremediation agents. , 1994 .

[43]  P. Huang Metals, other inorganics, and microbial activities , 1995 .

[44]  G. Stotzky,et al.  Sensitivity of Various Bacteria, Including Actinomycetes, and Fungi to Cadmium and the Influence of pH on Sensitivity , 1977, Applied and environmental microbiology.

[45]  G. D. Bowen,et al.  Mycorrhizal relations in trees for agroforestry and land rehabilitation , 1996 .

[46]  D. Read,et al.  The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance , 1982 .

[47]  A. Johansen,et al.  Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices , 1996 .

[48]  J. Zak,et al.  MYCORRHIZAL FUNGAL SPORE NUMBERS AND SPECIES OCCURRENCE IN TWO AMENDED MINE SPOILS IN ALBERTA, CANADA , 1982 .

[49]  R. Bargagli,et al.  Mercury and methyl mercury in higher fungi and their relation with the substrata in a cinnabar mining area , 1984 .

[50]  I. Kottke,et al.  Paxillus involutus — Pinus sylvestris Mycorrhizae from Heavily Polluted Forest. , 1993 .

[51]  A. R. Byrne,et al.  Trace element concentrations in higher fungi. , 1976, The Science of the total environment.

[52]  G. Tyler Metals in sporophores of basidiomycetes , 1980 .

[53]  G. Bécard,et al.  Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. , 1988, The New phytologist.

[54]  J. Colpaert,et al.  Heavy metal tolerance in some ectomycorrhizal fungi , 1987 .

[55]  D. Wilkins The influence of sheating (ecto-)mycorrhizas of trees on the uptake and toxicity of metals , 1991 .

[56]  D. Wilkins,et al.  Zinc tolerance of mycorrhizal Betula , 1985 .

[57]  I. S. Ross Effect of copper, cadmium and zinc on germination and mycelial growth in Candida albicans , 1982 .

[58]  J. Graham,et al.  Toxicity of fungicidal copper in soil to citrus seedlings and vesicular-arbuscular mycorrhizal fungi , 1986 .

[59]  L. Haanstra,et al.  Heavy metals in mushrooms and their relationship with soil characteristics , 1988 .

[60]  M. Joho,et al.  Different Distribution of Cd2+ between Cd-sensitive and Cd-resistant Strains of Saccharomyces cerevisiae , 1985 .

[61]  C. Leyval,et al.  Occurrence and infectivity of arbuscular mycorrhizal fungi in some norwegian soils influenced by heavy metals and soil properties , 1995 .

[62]  Ilya Raskin,et al.  Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants , 1995, Bio/Technology.

[63]  D. E. Baker,et al.  The Role of Mycorrhizae in the Interactions of Phosphorus with Zinc, Copper, and Other Elements1 , 1979 .

[64]  C. Leyval,et al.  Mobilization Of P And CD from Rock Phosphates by Rhizospheric Microorganisms (Phosphate-Dissolving Bacteria and Ectomycorrhizal Fungi) , 1993 .

[65]  D. Schmitz,et al.  Effects of environmental stress factors on ectomycorrhizal fungi in vitro , 1990 .

[66]  V. Mejstřík,et al.  Accumulation of trace elements in the fruiting bodies of macrofungi in the Krusné Hory Mountains Czechoslovakia. , 1988, The Science of the total environment.

[67]  B. Hetrick,et al.  The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoil. , 1994, Environmental pollution.

[68]  A. Darlington,et al.  Cadmium alters the growth of the ectomycorrhizal fungus Paxillus involutes: a new growth model accounts for changes in branching , 1988 .

[69]  Melanie D. Jones,et al.  The effects of nickel and copper on the axenic growth of ectomycorrhizal fungi , 1988 .

[70]  N. Dickinson,et al.  Metal resistance in trees: the role of mycorrhizae , 1995 .

[71]  R. J. Medve,et al.  Effects of Aluminum and Manganese on the Growth of Ectomycorrhizal Fungi , 1984, Applied and environmental microbiology.

[72]  T. Anderson,et al.  Bioremediation through rhizosphere technology , 1994 .

[73]  S. Gianinazzi,et al.  Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems , 1994, ALS Advances in Life Sciences.

[74]  G. W. Bailey,et al.  Sorption of heavy metals by the soil fungi Aspergillus niger and Mucor rouxii , 1992 .

[75]  A. P. Schwab,et al.  Biological characterization of a southeast Kansas mining site , 1994 .

[76]  L. Bakken,et al.  Accumulation of radiocaesium in fungi. , 1990, Canadian journal of microbiology.

[77]  E. Bååth,et al.  Fungi in metal contaminated soil near the Gusum Brass Mill, Sweden , 1984 .

[78]  Melanie D. Jones,et al.  Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flavidum II. Uptake of nickel, calcium, magnesium phosphorus and iron , 1988 .

[79]  D. Read,et al.  Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris , 1981 .

[80]  P. Tinker,et al.  TRANSLOCATION AND TRANSFER OF NUTRIENTS IN VESICULAR‐ARBUSCULAR MYCORRHIZAS , 1978 .

[81]  D. Walters,et al.  Polyamine biosynthesis in the ectomycorrhizal fungus Paxillus involutus exposed to zinc , 1995 .

[82]  J. Ellis,et al.  Effects of excess manganese on mineral uptake in mycorrhizal sorghum , 1994 .

[83]  A. Robson,et al.  65Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil , 1994 .

[84]  Ilya Raskin,et al.  Phytoextraction: the use of plants to remove heavy metals from soils. , 1995, Environmental science & technology.

[85]  C. Brunold,et al.  Effects of cadmium on non-mycorrhizal and mycorrhizal Norway spruce seedlings [Picea abies (L.) Karst.] and its ectomycorrhizal fungus Laccaria laccata (Scop, ex Fr.) Bk. & Br.: Sulphate reduction, thiols and distribution of the heavy metal. , 1993, The New phytologist.

[86]  D. Sauerbeck,et al.  Evaluation of chemical methods for assessing the Cd and Zn availability from different soils and sources , 1985 .