NuSTAR DETECTION OF THE BLAZAR B2 1023+25 AT REDSHIFT 5.3

B2 1023+25 is an extremely radio-loud quasar at z = 5.3 that was first identified as a likely high-redshift blazar candidate in the SDSS+FIRST quasar catalog. Here, we use the Nuclear Spectroscopic Telescope Array (NuSTAR) to investigate its non-thermal jet emission, whose high-energy component we detected in the hard X-ray energy band. The X-ray flux is ~ 5.5 x 10^(-14)erg cm^(-2) s^(-1) (5-10 keV) and the photon spectral index is Γ_X ≃ 1.3-1.6. Modeling the full spectral energy distribution, we find that the jet is oriented close to the line of sight, with a viewing angle of ~3°, and has significant Doppler boosting, with a large bulk Lorentz factor ~13, which confirms the identification of B2 1023+25 as a blazar. B2 1023+25 is the first object at redshift larger than 5 detected by NuSTAR, demonstrating the ability of NuSTAR to investigate the early X-ray universe and to study extremely active supermassive black holes located at very high redshift.

[1]  K. Thorne Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .

[2]  M. Nardini,et al.  Blazar candidates beyond redshift 4 observed with GROND , 2013, 1303.6951.

[3]  W. Brandt,et al.  AN X-RAY AND MULTIWAVELENGTH SURVEY OF HIGHLY RADIO-LOUD QUASARS AT z > 4: JET-LINKED EMISSION IN THE BRIGHTEST RADIO BEACONS OF THE EARLY UNIVERSE , 2012, 1301.0012.

[4]  Michael A. Nowak,et al.  CIAO: Chandra's data analysis system , 2006, SPIE Astronomical Telescopes + Instrumentation.

[5]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[6]  G. Pareschi,et al.  Chasing the heaviest black holes of jetted active galactic nuclei , 2009, 0912.0001.

[7]  J. Chiang,et al.  THE EVOLUTION OF SWIFT/BAT BLAZARS AND THE ORIGIN OF THE MeV BACKGROUND , 2009, 0905.0472.

[8]  J. Lasota,et al.  Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications , 2006, astro-ph/0604095.

[9]  L. Gurvits,et al.  On the Doppler boosting in the compact radio jet of the distant blazar J1026+2542 at z = 5.3 , 2013, 1302.2209.

[10]  Y. Terashima,et al.  CHANDRA SNAPSHOT OBSERVATIONS OF LOW-LUMINOSITY AGNS WITHA COMPACT RADIO SOURCE , 2002 .

[11]  G. Ghisellini,et al.  General physical properties of bright Fermi blazars , 2009, 0909.0932.

[12]  The X-Ray Spectral Properties and Variability of Luminous High-Redshift Active Galactic Nuclei , 2005, astro-ph/0505482.

[13]  Yunjin Kim,et al.  Nuclear Spectroscopic Telescope Array (NuSTAR) Mission , 2013, 2013 IEEE Aerospace Conference.

[14]  M. Wyatt,et al.  Confusion limited surveys: using WISE to quantify the rarity of warm dust around Kepler stars , 2012, 1207.0521.

[15]  U. Michigan,et al.  High redshift Fermi blazars , 2010, 1009.3275.

[16]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[17]  E. Colbert,et al.  The Difference between Radio-loud and Radio-quiet Active Galaxies , 1994, astro-ph/9408005.

[18]  P. Giommi,et al.  A simplified view of blazars: clearing the fog around long‐standing selection effects , 2011, 1110.4706.

[19]  R. J. Hanisch,et al.  Astronomical Data Analysis Software and Systems X , 2014 .

[20]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[21]  P. Giommi,et al.  THE SPECTRAL ENERGY DISTRIBUTION OF FERMI BRIGHT BLAZARS , 2009, The Astrophysical Journal.

[23]  G. Fossati,et al.  A unifying view of the spectral energy distributions of blazars , 1998 .

[24]  J. Chiang,et al.  EARLY FERMI GAMMA-RAY SPACE TELESCOPE OBSERVATIONS OF THE QUASAR 3C 454.3 , 2009, 0904.4280.

[25]  M. Honsberg,et al.  GROND—a 7-Channel Imager , 2008, 0801.4801.

[26]  Martin J. Rees,et al.  Comptonization of Diffuse Ambient Radiation by a Relativistic Jet: The Source of Gamma Rays from Blazars? , 1994 .

[27]  D. Schneider,et al.  X-Ray Lighthouses of the High-Redshift Universe. II. Further Snapshot Observations of the Most Luminous z≳4 Quasars with Chandra , 2005, astro-ph/0503301.

[28]  Cambridge,et al.  X-ray spectral properties of high-redshift radio-loud quasars beyond redshift 4 - first results * , 2006, astro-ph/0602272.

[29]  Ehud Behar,et al.  CAN THE SOFT X-RAY OPACITY TOWARD HIGH-REDSHIFT SOURCES PROBE THE MISSING BARYONS? , 2011, 1101.4662.

[30]  Iap,et al.  The role of relativistic jets in the heaviest and most active supermassive black holes at high redshift , 2013, 1304.1152.

[31]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[32]  XMM–Newton observations of GB B1428+4217: confirmation of intrinsic soft X-ray absorption , 2004, astro-ph/0403601.

[33]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[34]  J. Brinkmann,et al.  Chandra Observations of the Highest Redshift Quasars from the Sloan Digital Sky Survey , 2006, astro-ph/0602442.

[35]  R. Romani The Spectral Energy Distribution of the High-z Blazar Q0906+6930 , 2006, astro-ph/0607581.

[36]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[37]  Robert C. Romeo,et al.  Progress in the ULTRA 1-m ground-based telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[38]  G. Ghisellini,et al.  Canonical high power blazars , 2009, 0902.0793.

[39]  A. Omont,et al.  EDDINGTON-LIMITED ACCRETION AND THE BLACK HOLE MASS FUNCTION AT REDSHIFT 6 , 2010, 1006.1342.

[40]  S. Savaglio,et al.  The 2175 Å Dust Feature in a Gamma-Ray Burst Afterglow at Redshift 2.45 , 2008, 0805.2824.

[41]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[42]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[43]  M. Colpi,et al.  Black hole mass estimate for a sample of radio-loud narrow-line Seyfert 1 galaxies , 2012, 1212.1181.

[44]  E. Recillas,et al.  EXPLORING THE BLAZAR ZONE IN HIGH-ENERGY FLARES OF FSRQs , 2013, 1312.3998.