Density evolution analysis of braided convolutional codes on the erasure channel

Braided convolutional codes (BCCs) are a class of spatially coupled turbo-like codes with a structure that is similar to product codes or generalized LDPC codes. We derive explicit input/output transfer functions of the component convolutional decoders for the binary erasure channel (BEC). These are then used to formulate exact density evolution equations for blockwise BCCs under belief propagation (BP) decoding with optimal component APP decoders. Thresholds are computed for the coupled and uncoupled case, which is equivalent to tailbiting. Due to the relatively high rate of the component codes a significant threshold improvement by spatial coupling can be observed.

[1]  P. A. Wintz,et al.  Error Free Coding , 1973 .

[2]  Paul H. Siegel,et al.  Exact probability of erasure and a decoding algorithm for convolutional codes on the binary erasure channel , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[3]  Michael Lentmaier,et al.  Braided Block Codes , 2009, IEEE Transactions on Information Theory.

[4]  Rüdiger L. Urbanke,et al.  Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC , 2010, IEEE Transactions on Information Theory.

[5]  Henry D. Pfister,et al.  Iterative hard-decision decoding of braided BCH codes for high-speed optical communication , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[6]  Michael Lentmaier,et al.  An analysis of the block error probability performance of iterative decoding , 2005, IEEE Transactions on Information Theory.

[7]  Jørn Justesen,et al.  Error correcting coding for OTN , 2010, IEEE Communications Magazine.

[8]  Frank R. Kschischang,et al.  Staircase Codes: FEC for 100 Gb/s OTN , 2012, Journal of Lightwave Technology.

[9]  C. Méasson Conservation laws for coding , 2006 .

[10]  Michael Lentmaier,et al.  Braided Convolutional Codes: A New Class of Turbo-Like Codes , 2010, IEEE Transactions on Information Theory.

[11]  Gou Hosoya,et al.  国際会議参加報告:2014 IEEE International Symposium on Information Theory , 2014 .

[12]  Michael Lentmaier,et al.  Braided convolutional codes — A class of spatially coupled turbo-like codes , 2014, 2014 International Conference on Signal Processing and Communications (SPCOM).