As a direct extension of Charnes' characterization of two-person zero-sum constrained games by linear programming, we show how a general class of saddle value problems can be reduced to a pair of uniextremal dual separably-infinite programs. These programs have an infinite number of variables and an infinite number of constraints, but only a finite number of variables appear in an infinite number of constraints and only a finite number of constraints have an infinite number of variables. The conditions under which the characterization holds are among the more general ones appearing in the literature sufficient to guarantee the existence of a saddle point of a concave-convex function.The key construction involves augmenting a given player's original set of variables by generalized finite sequences determined by the other player's constraint set and objective function. A duality theory is developed which includes complementarity conditions, thereby making contact with the numerical treatment of semi-infinite programming.ZusammenfassungAls eine direkte Erweiterung von Charnes' Charakterisierung von Zweipersonen-Nullsummenspielen durch lineare Programme wird gezeigt, daß eine allgemeine Klasse von Sattelpunktproblemen auf ein Paar dualer separabel-infiniter Programme zurückgeführt werden kann. Diese Programme haben unendlich viele Variablen und unendlich viele Nebenbedingungen, wobei nur endlich viele Variablen in unendlich vielen Restriktionen vorkommen und nur endlich viele Nebenbedingungen unendlich viele Variablen enthalten. Es wird eine Dualitätstheorie entwickelt, die Komplementaritätsbedingungen einschließt, wobei auf die numerische Behandlung semi-infiniter Optimierungsprobleme Bezug genommen wird.
[1]
E. Gol′šteĭn,et al.
Theory of Convex Programming
,
1972
.
[2]
Jerome Bracken,et al.
Mathematical Programs with Optimization Problems in the Constraints
,
1973,
Oper. Res..
[3]
W W Cooper,et al.
DUALITY, HAAR PROGRAMS, AND FINITE SEQUENCE SPACES.
,
1962,
Proceedings of the National Academy of Sciences of the United States of America.
[4]
A Charnes,et al.
Constrained Games and Linear Programming.
,
1953,
Proceedings of the National Academy of Sciences of the United States of America.
[5]
Kenneth O. Kortanek,et al.
Numerical treatment of a class of semi‐infinite programming problems
,
1973
.
[6]
G. Debreu.
Theory of value : an axiomatic analysis of economic equilibrium
,
1960
.
[7]
A. Charnes,et al.
An Extremal Principle for Accounting Balance of a Resource Value-Transfer Economy: Existence, Uniqueness and Computation
,
1974
.
[8]
Ky Fan,et al.
Asymptotic cones and duality of linear relations
,
1969
.
[9]
J. Stoer,et al.
Convexity and Optimization in Finite Dimensions I
,
1970
.
[10]
Klaus Glashoff.
Duality theory of semi-infinite programming
,
1979
.
[11]
Werner Krabs,et al.
Optimierung und Approximation
,
1975
.
[12]
Abraham Charnes,et al.
Separably-infinite programs
,
1980,
Z. Oper. Research.