The algorithmic origins of life

Although it has been notoriously difficult to pin down precisely what is it that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informational narrative of living systems suggests that life may be characterized by context-dependent causal influences, and, in particular, that top-down (or downward) causation—where higher levels influence and constrain the dynamics of lower levels in organizational hierarchies—may be a major contributor to the hierarchal structure of living systems. Here, we propose that the emergence of life may correspond to a physical transition associated with a shift in the causal structure, where information gains direct and context-dependent causal efficacy over the matter in which it is instantiated. Such a transition may be akin to more traditional physical transitions (e.g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.

[1]  Patrick L. Griffin,et al.  Functional information and the emergence of biocomplexity , 2007, Proceedings of the National Academy of Sciences.

[2]  Paul Nurse,et al.  Life, logic and information , 2008, Nature.

[3]  Peter Schuster,et al.  A principle of natural self-organization , 1977, Naturwissenschaften.

[4]  B. Brookes,et al.  Biological information , 1974, Nature.

[5]  L E Orgel,et al.  The origin of life--a review of facts and speculations. , 1998, Trends in biochemical sciences.

[6]  Sara Imari Walker,et al.  Evolutionary Transitions and Top-Down Causation , 2012, 1207.4808.

[7]  Nicholas V Hud,et al.  Primitive genetic polymers. , 2010, Cold Spring Harbor perspectives in biology.

[8]  P. Davies,et al.  Does quantum mechanics play a non-trivial role in life? , 2004, Bio Systems.

[9]  Juan R. Granja,et al.  A self-replicating peptide , 1996, Nature.

[10]  Marcus Hutter,et al.  Algorithmic Information Theory , 1977, IBM J. Res. Dev..

[11]  LI Jianhui On the Definition of Life , 2019, Philosophy Study.

[12]  Gerald F. Joyce,et al.  Molecular evolution: Booting up life , 2002, Nature.

[13]  George F. R. Ellis,et al.  On the Nature of Emergent Reality , 2008 .

[14]  Paul Davies The Fifth Miracle: The Search for the Origin and Meaning of Life , 1998 .

[15]  Gentian Buzi,et al.  Glycolytic Oscillations and Limits on Robust Efficiency , 2011, Science.

[16]  L Jaeger,et al.  Top-down causation by information control: from a philosophical problem to a scientific research programme , 2007, Journal of The Royal Society Interface.

[17]  G. Wächtershäuser,et al.  Groundworks for an evolutionary biochemistry: the iron-sulphur world. , 1992, Progress in biophysics and molecular biology.

[18]  M. Eigen,et al.  The Hypercycle: A principle of natural self-organization , 2009 .

[19]  B. Ganem RNA world , 1987, Nature.

[20]  Eörs Szathmáry,et al.  Selectionist and Evolutionary Approaches to Brain Function: A Critical Appraisal , 2012, Front. Comput. Neurosci..

[21]  John Maynard Smith,et al.  The Concept of Information in Biology , 2000, Philosophy of Science.

[22]  A. Cairns-smith Genetic takeover and the mineral origins of life , 1982 .

[23]  George F. R. Ellis,et al.  Top-down causation: an integrating theme within and across the sciences? , 2012, Interface Focus.

[24]  George F R Ellis,et al.  Top-down causation and emergence: some comments on mechanisms , 2012, Interface Focus.

[25]  S. Gould,et al.  The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[26]  Michael P Robertson,et al.  The origins of the RNA world. , 2012, Cold Spring Harbor perspectives in biology.

[27]  Stanley L. Miller,et al.  The Origin and Early Evolution of Life: Prebiotic Chemistry, the Pre-RNA World, and Time , 1996, Cell.

[28]  Peter E. Nielsen Peptide Nucleic Acid (PNA). Implications for the origin of the genetic material and the homochirality of life , 2008 .

[29]  W. Gilbert Origin of life: The RNA world , 1986, Nature.

[30]  N. Pierce Origin of Species , 1914, Nature.

[31]  Paul Davies,et al.  The Physics of Downward Causation , 2006 .

[32]  N. Goldenfeld,et al.  Life is Physics: Evolution as a Collective Phenomenon Far From Equilibrium , 2010, 1011.4125.

[33]  Hubert P. Yockey,et al.  Information theory, evolution and the origin of life , 2005, Inf. Sci..

[34]  M. Berridge,et al.  Calcium signaling : a subject collection from Cold Spring Harbor perspectives in biology , 2012 .

[35]  Charles L. Harper,et al.  Fitness of the Cosmos for Life: Biochemistry and Fine-Tuning , 2007 .

[36]  M. Morange,et al.  The definition of life: a brief history of an elusive scientific endeavor. , 2010, Astrobiology.

[37]  M. Levy,et al.  The stability of the RNA bases: implications for the origin of life. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  David Balduzzi,et al.  Detecting emergent processes in cellular automata with excess information , 2011, ECAL.

[39]  John Maynard Smith,et al.  The major evolutionary transitions , 1995, Nature.

[40]  Jean,et al.  The Computer and the Brain , 1989, Annals of the History of Computing.

[41]  Eörs Szathmáry,et al.  Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life , 2010, Proceedings of the National Academy of Sciences.

[42]  Illtyd Trethowan Causality , 1938 .

[43]  G. F. Joyce The antiquity of RNA-based evolution , 2002, Nature.

[44]  Gregory. J. Chaitin,et al.  Algorithmic information theory , 1987, Cambridge tracts in theoretical computer science.

[45]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[46]  Irene A. Chen,et al.  The prebiotic evolutionary advantage of transferring genetic information from RNA to DNA , 2011, Nucleic acids research.

[47]  T. Cech,et al.  The efficiency and versatility of catalytic RNA: implications for an RNA world. , 1993, Gene.

[48]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[49]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[50]  A. Eschenmoser The search for the chemistry of life's origin , 2007 .

[51]  Arantxa Etxeverria The Origins of Order , 1993 .

[52]  Paulien Hogeweg,et al.  The Roots of Bioinformatics in Theoretical Biology , 2011, PLoS Comput. Biol..

[53]  L. Penrose,et al.  A Self-reproducing Analogue , 1957, Nature.

[54]  E. Schrödinger,et al.  What is life? : the physical aspect of the living cell , 1946 .

[55]  M. Eigen,et al.  The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. , 1977, Die Naturwissenschaften.

[56]  Frank Bodman,et al.  The improbability of life , 1963 .

[57]  John C. Chaput,et al.  Synthetic Genetic Polymers Capable of Heredity and Evolution , 2012, Science.

[58]  E. Szathmáry,et al.  The integration of the earliest genetic information. , 1989, Trends in ecology & evolution.

[59]  Hubert P. Yockey,et al.  Information theory, evolution, and the origin of life: Index , 2005 .

[60]  G. Tononi An information integration theory of consciousness , 2004, BMC Neuroscience.

[61]  Denis Noble,et al.  A theory of biological relativity: no privileged level of causation , 2012, Interface Focus.

[62]  D. Deamer,et al.  The Lipid World , 2001, Origins of life and evolution of the biosphere.

[63]  D. Hofstadter,et al.  Godel, Escher, Bach: An Eternal Golden Braid , 1979 .

[64]  Christopher J. Lee Open Peer Review by a Selected-Papers Network , 2011, Front. Comput. Neurosci..

[65]  Gregory J. Chaitin,et al.  On the Simplicity and Speed of Programs for Computing Infinite Sets of Natural Numbers , 1969, J. ACM.

[66]  D. Segrè,et al.  A Statistical Chemistry Approach to the Origin of Life , 1999 .

[67]  D. Campbell ‘Downward Causation’ in Hierarchically Organised Biological Systems , 1974 .

[68]  A. Eschenmoser,et al.  The Search for the Chemistry of Life′s Origin , 2008 .

[69]  David Moxey,et al.  Glycolytic Oscillations and Limits on Robust Efficiency , 2011 .

[70]  L. Orgel,et al.  A Simpler Nucleic Acid , 2000, Science.

[71]  Donald T. Campbell,et al.  Levels of Organization, Downward Causation, and the Selection-Theory Approach to Evolutionary Epistemology , 2013 .

[72]  J. Flack,et al.  Context modulates signal meaning in primate communication , 2007, Proceedings of the National Academy of Sciences.

[73]  Gerald F. Joyce,et al.  Bit by Bit: The Darwinian Basis of Life , 2012, PLoS biology.

[74]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[75]  Denis Noble,et al.  Genes and causation , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[76]  Gennaro Auletta,et al.  Cognitive Biology: Dealing with Information from Bacteria to Minds , 2011 .

[77]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[78]  Carol E. Cleland,et al.  Defining ‘Life’ , 2004, Origins of life and evolution of the biosphere.

[79]  B. Küppers Information and the origin of life , 1990 .

[80]  P. Davies,et al.  The epigenome and top-down causation , 2012, Interface Focus.

[81]  W Seth Childers,et al.  Peptide membranes in chemical evolution. , 2009, Current opinion in chemical biology.

[82]  Nigel Goldenfeld,et al.  Biology's next revolution , 2007, Nature.

[83]  Doron Lancet,et al.  Excess Mutual Catalysis Is Required for Effective Evolvability , 2012, Artificial Life.

[84]  R Shapiro A Replicator Was Not Involved in the Origin of Life , 2000, IUBMB life.

[85]  Moshe Sipper,et al.  Von Neumann's Quintessential Message: Genotype + Ribotype = Phenotype , 1998, Artificial Life.

[86]  Freeman J. Dyson,et al.  A model for the origin of life , 2005, Journal of Molecular Evolution.

[87]  William Poundstone,et al.  The Recursive Universe: Cosmic Complexity and the Limits of Scientific Knowledge , 1985 .

[88]  D. Lancet,et al.  Composing life , 2000, EMBO reports.

[89]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[90]  K Dave,et al.  A CRITICAL APPRAISAL , 2002 .

[91]  G. Wächtershäuser,et al.  Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: implications for the origin of life. , 1998, Science.

[92]  Michael Levin,et al.  Morphogenetic fields in embryogenesis, regeneration, and cancer: Non-local control of complex patterning , 2012, Biosyst..

[93]  Laura F. Landweber,et al.  Rewiring the keyboard: evolvability of the genetic code , 2001, Nature Reviews Genetics.

[94]  M. Eigen Selforganization of matter and the evolution of biological macromolecules , 1971, Naturwissenschaften.

[95]  Nicholas Shea,et al.  Representation in the genome and in other inheritance systems , 2007 .

[96]  M. Russell,et al.  The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front , 1997, Journal of the Geological Society.

[97]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .