Impact of different light sources on broiler rearing environment

Broiler production is highly dependent on the use of artificial light. The light source may affect the effectiveness of housing conditions due to increasing ambient temperature and concentration of noxious gases. This research aimed to evaluate the effects of different bulb types on the thermal, aerial, and acoustic environment of broiler aviaries. The experiment was carried out at a commercial broiler farm in Dourados, Mato Grosso do Sul State, Brazil. Three aviaries were used, and two flocks of male broilers from Cobb® genetic strain were reared from the first day to slaughter. Each aviary was equipped with a different light source, comprising the adopted treatments (A1 - incandescent light bulb, control; A2 - sodium vapor light bulb; A3 - fluorescent light bulb). The aviaries were divided into nine quadrants, and the environmental data (ambient dry bulb temperature and relative humidity), litter surface temperature, CO2 and NH3 concentrations, and bird sound pressure behavior were recorded in each quadrant. The aviary with incandescent light presented higher air and litter temperatures, and concentration of gases than the other tested alternatives. It also presented higher level of sound pressure in the second week of the growing period; however, from this period up to slaughter, there was no effect of the light source on the results of broiler sound pressure level.

[1]  A. S. Mendes,et al.  VISÃO E ILUMINAÇÃO NA AVICULTURA MODERNA , 2010 .

[2]  Hongwei Xin,et al.  U.S. broiler housing ammonia emissions inventory , 2008 .

[3]  E. Voslářová,et al.  Stress in broiler chickens due to acute noise exposure. , 2009 .

[4]  Søren Pedersen,et al.  Heat and Moisture Production of Broilers kept on Straw Bedding , 2000 .

[5]  Stanley E. Curtis,et al.  Environmental Management in Animal Agriculture , 1983 .

[6]  Marcelo Bastos Cordeiro,et al.  Avaliação do uso de ventilação mínima em galpões avícolas e de sua influência no desempenho de aves de corte no período de inverno , 2010 .

[7]  Irenilza de Alencar Nääs,et al.  Estimativa de bem-estar de frango de corte em função da concentração de amônia e grau de luminosidade no galpão de produção , 2007 .

[8]  G. Alvino,et al.  Light intensity during rearing affects the behavioural synchrony and resting patterns of broiler chickens , 2009, British poultry science.

[9]  Nelson Carneiro Baião,et al.  Efeitos dos programas de luz sobre desempenho, rendimento de carcaça e resposta imunológica em frangos de corte , 2008 .

[10]  Z M de Souza,et al.  Litter And Air Quality In Different Broiler Housing Conditions [qualidade Da Cama E Do Ar Em Diferentes Condições De Alojamento De Frangos De Corte] , 2011 .

[11]  Thayla Morandi Ridolfi de Carvalho,et al.  Qualidade da Cama e do Ar em Diferentes Condições de Alojamento de Frangos de Corte em Fase de Aquecimento , 2011 .

[12]  P. Lewis,et al.  Lighting, ventilation and temperature , 2010, British poultry science.

[13]  J. N. D. Silva,et al.  Conforto térmico e desempenho de pintos de corte submetidos a diferentes sistemas de aquecimento no período de inverno , 2010 .

[14]  C. Chavez,et al.  Nitrogen emissions from broilers measured by mass balance over eighteen consecutive flocks. , 2006, Poultry science.

[15]  M. Oliveira,et al.  Produção de amônia no interior de galpões avícolas com modificações ambientais , 2011 .

[16]  Minmin Luo,et al.  Integration of CO2 and odorant signals in the mouse olfactory bulb , 2010, Neuroscience.

[17]  V. R. Phillips,et al.  Emissions of Aerial Pollutants in Livestock Buildings in Northern Europe: Overview of a Multinational Project , 1998 .

[18]  Irenilza de Alencar Nääs,et al.  Noise analysis to evaluate chick thermal comfort , 2008 .