Spline smoothing in small area trend estimation and forecasting
暂无分享,去创建一个
María Dolores Ugarte | Ana F. Militino | María Durbán | T. Goicoa | A. F. Militino | M. Durbán | T. Goicoa | M. Ugarte
[1] Sue J. Welham,et al. An efficient computing strategy for prediction in mixed linear models , 2004, Comput. Stat. Data Anal..
[2] Jiming Jiang,et al. Mean squared error of empirical predictor , 2004, math/0406455.
[3] D. Ruppert. Selecting the Number of Knots for Penalized Splines , 2002 .
[4] Partha Lahiri,et al. On the Impact of Bootstrap in Survey Sampling and Small-Area Estimation , 2003 .
[5] M. D. Ugarte,et al. Alternative Models for Describing Spatial Dependence among Dwelling Selling Prices , 2004 .
[6] Matt P. Wand,et al. Smoothing and mixed models , 2003, Comput. Stat..
[7] Monica Pratesi,et al. Semiparametric M‐quantile regression for estimating the proportion of acidic lakes in 8‐digit HUCs of the Northeastern US , 2008 .
[8] M. Wand,et al. Exact likelihood ratio tests for penalised splines , 2005 .
[9] G. Wahba. Bayesian "Confidence Intervals" for the Cross-validated Smoothing Spline , 1983 .
[10] Paul H. C. Eilers,et al. Smoothing and forecasting mortality rates , 2004 .
[11] S. Wood. Thin plate regression splines , 2003 .
[12] S. R. Searle,et al. Generalized, Linear, and Mixed Models , 2005 .
[13] Paul H. C. Eilers,et al. Flexible smoothing with B-splines and penalties , 1996 .
[14] W. Meredith,et al. Statistics and Data Analysis , 1974 .
[15] M. Kenward,et al. The Analysis of Designed Experiments and Longitudinal Data by Using Smoothing Splines , 1999 .
[16] M. Wand,et al. Simple Incorporation of Interactions into Additive Models , 2001, Biometrics.
[17] M. D. Ugarte,et al. SEARCHING FOR HOUSING SUBMARKETS USING MIXTURES OF LINEAR MODELS , 2004 .
[18] C. R. Henderson,et al. Best linear unbiased estimation and prediction under a selection model. , 1975, Biometrics.
[19] David Ruppert,et al. Variable Selection and Function Estimation in Additive Nonparametric Regression Using a Data-Based Prior: Comment , 1999 .
[20] D. Ruppert,et al. Likelihood ratio tests in linear mixed models with one variance component , 2003 .
[21] M. D. Ugarte,et al. Using small area models to estimate the total area occupied by olive trees , 2006 .
[22] R. Tibshirani,et al. Generalized Additive Models , 1991 .
[23] M. Wand,et al. Incorporation of historical controls using semiparametric mixed models , 2001 .
[24] M. Durbán,et al. Flexible smoothing with P-splines: a unified approach , 2002 .
[25] B. Silverman,et al. Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .
[26] J. Rao,et al. The estimation of the mean squared error of small-area estimators , 1990 .
[27] D. Harville. Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .
[28] F. Breidt,et al. Non‐parametric small area estimation using penalized spline regression , 2008 .
[29] María Dolores Ugarte,et al. Benchmarked estimates in small areas using linear mixed models with restrictions , 2009 .
[30] J. Rao,et al. Wiley Series in Survey Methodology , 2005 .
[31] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[32] Karl J. Friston,et al. Variance Components , 2003 .
[33] Paul H. C. Eilers,et al. Fast and compact smoothing on large multidimensional grids , 2006, Comput. Stat. Data Anal..
[34] Domingo Morales,et al. Analytic and bootstrap approximations of prediction errors under a multivariate Fay-Herriot model , 2008, Comput. Stat. Data Anal..
[35] S. Wood. ON CONFIDENCE INTERVALS FOR GENERALIZED ADDITIVE MODELS BASED ON PENALIZED REGRESSION SPLINES , 2006 .
[36] Thomas S. Shively,et al. Variable Selection and Function Estimation in Additive Nonparametric Regression Using a Data-Based Prior , 1999 .
[37] K. Liang,et al. Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions , 1987 .
[38] S. R. Searle,et al. The estimation of environmental and genetic trends from records subject to culling. , 1959 .
[39] Steven G. Gilmour,et al. The analysis of designed experiments and longitudinal data by using smoothing splines - Discussion , 1999 .
[40] Gerda Claeskens,et al. Some theory for penalized spline generalized additive models , 2002 .