Spline smoothing in small area trend estimation and forecasting

Semiparametric models combining both non-parametric trends and small area random effects are now currently being investigated in small area estimation (SAE). These models can prevent bias when the functional form of the relationship between the response and the covariates is unknown. Furthermore, penalized spline regression can be a good tool to incorporate non-parametric regression models into the SAE techniques, as it can be represented as a mixed effects model. A penalized spline model is considered to analyze trends in small areas and to forecast future values of the response. The prediction mean squared error (MSE) for the fitted and the predicted values, together with estimators for those quantities, are derived. The procedure is illustrated with real data consisting of average prices per squared meter of used dwellings in nine neighborhoods of the city of Vitoria, Spain, during the period 1993-2007. Dwelling prices for the next five years are also forecast. A simulation study is conducted to assess the performance of both the small area trend estimator and the prediction MSE estimators. The results confirm a good behavior of the proposed estimators in terms of bias and variability.

[1]  Sue J. Welham,et al.  An efficient computing strategy for prediction in mixed linear models , 2004, Comput. Stat. Data Anal..

[2]  Jiming Jiang,et al.  Mean squared error of empirical predictor , 2004, math/0406455.

[3]  D. Ruppert Selecting the Number of Knots for Penalized Splines , 2002 .

[4]  Partha Lahiri,et al.  On the Impact of Bootstrap in Survey Sampling and Small-Area Estimation , 2003 .

[5]  M. D. Ugarte,et al.  Alternative Models for Describing Spatial Dependence among Dwelling Selling Prices , 2004 .

[6]  Matt P. Wand,et al.  Smoothing and mixed models , 2003, Comput. Stat..

[7]  Monica Pratesi,et al.  Semiparametric M‐quantile regression for estimating the proportion of acidic lakes in 8‐digit HUCs of the Northeastern US , 2008 .

[8]  M. Wand,et al.  Exact likelihood ratio tests for penalised splines , 2005 .

[9]  G. Wahba Bayesian "Confidence Intervals" for the Cross-validated Smoothing Spline , 1983 .

[10]  Paul H. C. Eilers,et al.  Smoothing and forecasting mortality rates , 2004 .

[11]  S. Wood Thin plate regression splines , 2003 .

[12]  S. R. Searle,et al.  Generalized, Linear, and Mixed Models , 2005 .

[13]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[14]  W. Meredith,et al.  Statistics and Data Analysis , 1974 .

[15]  M. Kenward,et al.  The Analysis of Designed Experiments and Longitudinal Data by Using Smoothing Splines , 1999 .

[16]  M. Wand,et al.  Simple Incorporation of Interactions into Additive Models , 2001, Biometrics.

[17]  M. D. Ugarte,et al.  SEARCHING FOR HOUSING SUBMARKETS USING MIXTURES OF LINEAR MODELS , 2004 .

[18]  C. R. Henderson,et al.  Best linear unbiased estimation and prediction under a selection model. , 1975, Biometrics.

[19]  David Ruppert,et al.  Variable Selection and Function Estimation in Additive Nonparametric Regression Using a Data-Based Prior: Comment , 1999 .

[20]  D. Ruppert,et al.  Likelihood ratio tests in linear mixed models with one variance component , 2003 .

[21]  M. D. Ugarte,et al.  Using small area models to estimate the total area occupied by olive trees , 2006 .

[22]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[23]  M. Wand,et al.  Incorporation of historical controls using semiparametric mixed models , 2001 .

[24]  M. Durbán,et al.  Flexible smoothing with P-splines: a unified approach , 2002 .

[25]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[26]  J. Rao,et al.  The estimation of the mean squared error of small-area estimators , 1990 .

[27]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[28]  F. Breidt,et al.  Non‐parametric small area estimation using penalized spline regression , 2008 .

[29]  María Dolores Ugarte,et al.  Benchmarked estimates in small areas using linear mixed models with restrictions , 2009 .

[30]  J. Rao,et al.  Wiley Series in Survey Methodology , 2005 .

[31]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[32]  Karl J. Friston,et al.  Variance Components , 2003 .

[33]  Paul H. C. Eilers,et al.  Fast and compact smoothing on large multidimensional grids , 2006, Comput. Stat. Data Anal..

[34]  Domingo Morales,et al.  Analytic and bootstrap approximations of prediction errors under a multivariate Fay-Herriot model , 2008, Comput. Stat. Data Anal..

[35]  S. Wood ON CONFIDENCE INTERVALS FOR GENERALIZED ADDITIVE MODELS BASED ON PENALIZED REGRESSION SPLINES , 2006 .

[36]  Thomas S. Shively,et al.  Variable Selection and Function Estimation in Additive Nonparametric Regression Using a Data-Based Prior , 1999 .

[37]  K. Liang,et al.  Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions , 1987 .

[38]  S. R. Searle,et al.  The estimation of environmental and genetic trends from records subject to culling. , 1959 .

[39]  Steven G. Gilmour,et al.  The analysis of designed experiments and longitudinal data by using smoothing splines - Discussion , 1999 .

[40]  Gerda Claeskens,et al.  Some theory for penalized spline generalized additive models , 2002 .