SMTInterpol: An Interpolating SMT Solver

Craig interpolation is an active research topic and has become a powerful technique in verification. We present SMTInterpol, an interpolating SMT solver for the quantifier-free fragment of the combination of the theory of uninterpreted functions and the theory of linear arithmetic over integers and reals. SMTInterpol is SMTLIB 2 compliant and available under an open source software license (LGPL v3).

[1]  Graham Steel,et al.  Deduction with XOR Constraints in Security API Modelling , 2005, CADE.

[2]  Alberto Griggio,et al.  Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic , 2011, TACAS.

[3]  David A. Plaisted,et al.  A Structure-Preserving Clause Form Translation , 1986, J. Symb. Comput..

[4]  Daniel Kroening,et al.  An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic , 2010, IJCAR.

[5]  William Craig,et al.  Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory , 1957, Journal of Symbolic Logic.

[6]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[7]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[8]  Madan Musuvathi,et al.  A Combination Method for Generating Interpolants , 2005, CADE.

[9]  Roberto Bruttomesso,et al.  The OpenSMT Solver , 2010, TACAS.

[10]  Kousha Etessami,et al.  Analysis of Recursive Game Graphs Using Data Flow Equations , 2004, VMCAI.

[11]  Kenneth L. McMillan,et al.  Lazy Abstraction with Interpolants , 2006, CAV.

[12]  Aaron Stump,et al.  SMT-COMP: Satisfiability Modulo Theories Competition , 2005, CAV.

[13]  David R. Cok,et al.  jSMTLIB: Tutorial, Validation and Adapter Tools for SMT-LIBv2 , 2011, NASA Formal Methods.

[14]  Isil Dillig,et al.  Cuts from proofs: a complete and practical technique for solving linear inequalities over integers , 2009, Formal Methods Syst. Des..

[15]  Nikolaj Bjørner,et al.  Model-based Theory Combination , 2008, SMT@CAV.

[16]  Cesare Tinelli,et al.  DPLL( T): Fast Decision Procedures , 2004, CAV.

[17]  Jochen Hoenicke,et al.  Nested interpolants , 2010, POPL '10.

[18]  Kenneth L. McMillan,et al.  Interpolants from Z3 proofs , 2011, 2011 Formal Methods in Computer-Aided Design (FMCAD).

[19]  Alberto Griggio,et al.  Efficient Interpolant Generation in Satisfiability Modulo Theories , 2008, TACAS.

[20]  David Detlefs,et al.  Simplify: a theorem prover for program checking , 2005, JACM.

[21]  Clark W. Barrett,et al.  The SMT-LIB Standard Version 2.0 , 2010 .

[22]  Viorica Sofronie-Stokkermans,et al.  Constraint solving for interpolation , 2007, J. Symb. Comput..

[23]  Rupak Majumdar,et al.  CSIsat: Interpolation for LA+EUF , 2008, CAV.

[24]  Kenneth L. McMillan,et al.  An interpolating theorem prover , 2005, Theor. Comput. Sci..

[25]  Bruno Dutertre,et al.  A Fast Linear-Arithmetic Solver for DPLL(T) , 2006, CAV.