Existence of equilibrium points and their linear stability in the generalized photogravitational Chermnykh-like problem with power-law profile

[1]  B. Ishwar,et al.  Out-of-plane equilibrium points and stability in the generalised photogravitational restricted three body problem , 2011 .

[2]  Dhanbad,et al.  Trajectories of $L_4$ and Lyapunov Characteristic Exponents in the Generalized Photogravitational Chermnykh-Like Problem , 2011, 1101.5434.

[3]  Kei Yamada,et al.  Uniqueness of collinear solutions for the relativistic three-body problem , 2010, 1011.2007.

[4]  B. S. Kushvah Trajectory and stability of Lagrangian point L2 in the Sun-Earth system , 2010, 1009.4008.

[5]  J. Peláez,et al.  On the stability of artificial equilibrium points in the circular restricted three-body problem , 2011 .

[6]  B. S. Kushvah Linear stability of equilibrium points in the generalized photogravitational Chermnykh’s problem , 2008, 0806.1132.

[7]  I. Jiang,et al.  On the Chermnykh-Like Problems: II. The Equilibrium Points , 2006, astro-ph/0610767.

[8]  I. Jiang,et al.  On the Chermnykh-Like Problems: I. the Mass Parameter μ = 0.5 , 2006, astro-ph/0610735.

[9]  B. S. Kushvah,et al.  Linear Stability of Triangular Equilibrium Points in the Generalized Photogravitational Restricted Three Body Problem with Poynting_Robertson Drag , 2006, math/0602467.

[10]  K. E. Papadakis Motion Around The Triangular Equilibrium Points Of The Restricted Three-Body Problem Under Angular Velocity Variation , 2005 .

[11]  I. Jiang,et al.  The drag-induced resonant capture for Kuiper Belt objects , 2004, astro-ph/0410426.

[12]  G. Pucacco,et al.  Theory of Orbits - Integrable Systems and Non-perturbative Methods , 2004 .

[13]  W. Ip,et al.  The planetary system of upsilon Andromedae , 2000, astro-ph/0008174.

[14]  J. Lissauer,et al.  Stability Analysis of the Planetary System Orbiting υ Andromedae , 2001 .

[15]  A. Maciejewski,et al.  Unrestricted Planar Problem of a Symmetric Body and a Point Mass. Triangular Libration Points and Their Stability , 1999 .

[16]  Krzysztof Goździewski,et al.  Nonlinear Stability of the Lagrangian Libration Points in the Chermnykh Problem , 1998 .

[17]  M. P. Strand,et al.  Semiclassical quantization of the low lying electronic states of H2 , 1979 .

[18]  H. P.,et al.  An Introduction to Celestial Mechanics , 1914, Nature.