Identifying relevant and irrelevant variables in sparse factor models

Summary This paper considers factor estimation from heterogeneous data, where some of the variables—the relevant ones—are informative for estimating the factors, and others—the irrelevant ones—are not. We estimate the factor model within a Bayesian framework, specifying a sparse prior distribution for the factor loadings. Based on identified posterior factor loading estimates, we provide alternative methods to identify relevant and irrelevant variables. Simulations show that both types of variables are identified quite accurately. Empirical estimates for a large multi-country GDP dataset and a disaggregated inflation dataset for the USA show that a considerable share of variables is irrelevant for factor estimation.

[1]  A. E. Maxwell,et al.  Factor Analysis as a Statistical Method. , 1964 .

[2]  Timothy Hanson,et al.  Scheffé Style Simultaneous Credible Bands for Regression Surfaces with Application to Ache Honey Gathering , 2012 .

[3]  Filippo Altissimo,et al.  New Eurocoin: Tracking Economic Growth in Real Time , 2006, The Review of Economics and Statistics.

[4]  Marco Del Negro,et al.  Dynamic Factor Models with Time-Varying Parameters: Measuring Changes in International Business Cycles , 2008 .

[5]  S. Frühwirth-Schnatter Data Augmentation and Dynamic Linear Models , 1994 .

[6]  Michael T. Owyang,et al.  An Endogenously Clustered Factor Approach to International Business Cycles , 2012 .

[7]  Emi Nakamura,et al.  Five Facts about Prices: A Reevaluation of Menu Cost Models , 2008 .

[8]  J. Stock,et al.  Macroeconomic Forecasting Using Diffusion Indexes , 2002 .

[9]  Michael A. West,et al.  BAYESIAN MODEL ASSESSMENT IN FACTOR ANALYSIS , 2004 .

[10]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[11]  Zoubin Ghahramani,et al.  Nonparametric Bayesian Sparse Factor Models with application to Gene Expression modelling , 2010, The Annals of Applied Statistics.

[12]  Mirko Wiederholt,et al.  Sectoral Price Data and Models of Price Setting , 2009 .

[13]  D. Dunson,et al.  Sparse Bayesian infinite factor models. , 2011, Biometrika.

[14]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[15]  C. Whiteman,et al.  International Business Cycles: World, Region, and Country-Specific Factors , 2003 .

[16]  Serena Ng,et al.  Are More Data Always Better for Factor Analysis? , 2003 .

[17]  Luc Bauwens,et al.  Bayesian Inference in Dynamic Econometric Models , 2000 .

[18]  Marco Lippi,et al.  OPENING THE BLACK BOX: STRUCTURAL FACTOR MODELS WITH LARGE CROSS SECTIONS , 2009, Econometric Theory.

[19]  Robert B. Litterman Forecasting with Bayesian Vector Autoregressions-Five Years of Experience , 1984 .

[20]  J. Geweke,et al.  Variable selection and model comparison in regression , 1994 .

[21]  Charles H. Whiteman,et al.  Understanding the Evolution of World Business Cycles , 2005 .

[22]  Peter J. Rousseeuw,et al.  Clustering by means of medoids , 1987 .

[23]  J. Geweke,et al.  Measuring the pricing error of the arbitrage pricing theory , 1996 .

[24]  Sylvia Frühwirth-Schnatter,et al.  Dealing with Label Switching under Model Uncertainty , 2011 .

[25]  M. West,et al.  High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics , 2008, Journal of the American Statistical Association.

[26]  M. Hallin,et al.  Dynamic factor models with infinite-dimensional factor spaces: One-sided representations , 2013 .

[27]  Leonhard Held,et al.  Simultaneous Posterior Probability Statements From Monte Carlo Output , 2004 .

[28]  Hedibert Freitas Lopes,et al.  Parsimonious Bayesian Factor Analysis when the Number of Factors is Unknown , 2010 .

[29]  Siem Jan Koopman,et al.  Computing Observation Weights for Signal Extraction and Filtering , 2003 .

[30]  J. Bai,et al.  Principal components estimation and identification of static factors , 2013 .

[31]  Herman Rubin,et al.  Statistical Inference in Factor Analysis , 1956 .

[32]  E. George,et al.  APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .

[33]  Peng Wang,et al.  Identification theory for high dimensional static and dynamic factor models , 2014 .

[34]  Carlos M. Carvalho,et al.  STRUCTURE AND SPARSITY IN HIGH-DIMENSIONAL MULTIVARIATE ANALYSIS , 2006 .

[35]  M. West,et al.  Bayesian Dynamic Factor Models and Portfolio Allocation , 2000 .

[36]  J. Heckman,et al.  Bayesian Exploratory Factor Analysis , 2014, Journal of econometrics.

[37]  Jean Boivin,et al.  Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach , 2003 .