Estimation of the Number of Endmembers in Hyperspectral Images Using Agglomerative Clustering

[1]  Amandine Robin,et al.  Determining the Intrinsic Dimension of a Hyperspectral Image Using Random Matrix Theory , 2013, IEEE Transactions on Image Processing.

[2]  Ying Wang,et al.  Robust Hyperspectral Unmixing With Correntropy-Based Metric , 2013, IEEE Transactions on Image Processing.

[3]  Boaz Nadler,et al.  Non-Parametric Detection of the Number of Signals: Hypothesis Testing and Random Matrix Theory , 2009, IEEE Transactions on Signal Processing.

[4]  Jun Zhou,et al.  Hyperspectral Unmixing via $L_{1/2}$ Sparsity-Constrained Nonnegative Matrix Factorization , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[5]  José M. Bioucas-Dias,et al.  Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Mark Berman,et al.  An Investigation Into the Impact of Band Error Variance Estimation on Intrinsic Dimension Estimation in Hyperspectral Images , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  Addisson Salazar,et al.  Multichannel dynamic modeling of non-Gaussian mixtures , 2019, Pattern Recognit..

[8]  Adolfo Martínez Usó,et al.  Clustering-Based Hyperspectral Band Selection Using Information Measures , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Paul Honeine,et al.  Estimating the Intrinsic Dimension of Hyperspectral Images Using a Noise-Whitened Eigengap Approach , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Mark Berman,et al.  Improved Estimation of the Intrinsic Dimension of a Hyperspectral Image Using Random Matrix Theory , 2019, Remote. Sens..

[11]  Gaofeng Meng,et al.  Spectral Unmixing via Data-Guided Sparsity , 2014, IEEE Transactions on Image Processing.

[12]  Naoto Yokoya,et al.  An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing , 2018, IEEE Transactions on Image Processing.

[13]  Asad Mahmood,et al.  Estimation of the Noise Spectral Covariance Matrix in Hyperspectral Images , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[14]  Inderjit S. Dhillon,et al.  Concept Decompositions for Large Sparse Text Data Using Clustering , 2004, Machine Learning.

[15]  R. Mojena,et al.  Hierarchical Grouping Methods and Stopping Rules: An Evaluation , 1977, Comput. J..

[16]  Jun Huang,et al.  Hyperspectral Unmixing with Gaussian Mixture Model and Low-Rank Representation , 2019, Remote. Sens..

[17]  Filiberto Pla,et al.  Hyperspectral Unmixing Based on Dual-Depth Sparse Probabilistic Latent Semantic Analysis , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Terrence J. Sejnowski,et al.  ICA Mixture Models for Unsupervised Classification of Non-Gaussian Classes and Automatic Context Switching in Blind Signal Separation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  R. E. Roger Principal Components transform with simple, automatic noise adjustment , 1996 .

[20]  Nicolas Dobigeon,et al.  Hierarchical Sparse Nonnegative Matrix Factorization for Hyperspectral Unmixing with Spectral Variability , 2020, Remote. Sens..

[21]  Jean-Yves Tourneret,et al.  Estimating the Number of Endmembers in Hyperspectral Images Using the Normal Compositional Model and a Hierarchical Bayesian Algorithm , 2010, IEEE Journal of Selected Topics in Signal Processing.

[22]  Azriel Rosenfeld,et al.  A Fast Parallel Algorithm for Blind Estimation of Noise Variance , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Asad Mahmood,et al.  Modified Residual Method for the Estimation of Noise in Hyperspectral Images , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Chein-I Chang,et al.  Estimation of number of spectrally distinct signal sources in hyperspectral imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Asad Mahmood,et al.  Estimation of the Intrinsic Dimension of Hyperspectral Images: Comparison of Current Methods , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.