A 2‐D spectral‐element method for computing spherical‐earth seismograms—II. Waves in solid–fluid media

SUMMARY We portray a dedicated spectral-element method to solve the elastodynamic wave equation upon spherically symmetric earth models at the expense of a 2-D domain. Using this method, 3-D wavefields of arbitrary resolution may be computed to obtain Frechet sensitivity kernels, es- pecially for diffracted arrivals. The meshing process is presented for varying frequencies in terms of its efficiency as measured by the total number of elements, their spacing variations and stability criteria. We assess the mesh quantitatively by defining these numerical parameters in a general non-dimensionalized form such that comparisons to other grid-based methods are straightforward. Efficient-mesh generation for the PREM example and a minimum-messaging domain decomposition and parallelization strategy lay foundations for waveforms up to fre- quencies of 1 Hz on moderate PC clusters. The discretization of fluid, solid and respective boundary regions is similar to previous spectral-element implementations, save for a fluid potential formulation that incorporates the density, thereby yielding identical boundary terms on fluid and solid sides. We compare the second-order Newmark time extrapolation scheme with a newly implemented fourth-order symplectic scheme and argue in favour of the latter in cases of propagation over many wavelengths due to drastic accuracy improvements. Various validation examples such as full moment-tensor seismograms, wavefield snapshots, and energy conservation illustrate the favourable behaviour and potential of the method.

[1]  Alexandre Fournier,et al.  Spherical‐earth Fréchet sensitivity kernels , 2007 .

[2]  G. Quispel,et al.  Geometric integrators for ODEs , 2006 .

[3]  S. Reich,et al.  Symplectic Time‐Stepping for Particle Methods , 2004 .

[4]  F. Scherbaum,et al.  Acoustic simulation of P‐wave propagation in a heterogeneous spherical earth: numerical method and application to precursor waves to PKPdf , 2000 .

[5]  Emmanuel Chaljub Modélisation numérique de la propagation d'ondes sismiques en géométrie sphérique : application à la sismologie globale , 2000 .

[6]  Wolfgang Friederich,et al.  COMPLETE SYNTHETIC SEISMOGRAMS FOR A SPHERICALLY SYMMETRIC EARTH BY A NUMERICAL COMPUTATION OF THE GREEN'S FUNCTION IN THE FREQUENCY DOMAIN , 1995 .

[7]  Robert I. McLachlan Families of High-Order Composition Methods , 2004, Numerical Algorithms.

[8]  Robert J. Geller,et al.  DSM complete synthetic seismograms : SH, spherically symmetric, case , 1994 .

[9]  Emmanuel Chaljub,et al.  Sensitivity of SS precursors to topography on the upper‐mantle 660‐km discontinuity , 1997 .

[10]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[11]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[12]  Jean-Pierre Vilotte,et al.  Triangular Spectral Element simulation of two-dimensional elastic wave propagation using unstructured triangular grids , 2006 .

[13]  Igor P. Omelyan,et al.  Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations , 2003 .

[14]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[15]  G. Quispel,et al.  Foundations of Computational Mathematics: Six lectures on the geometric integration of ODEs , 2001 .

[16]  Igor Omelyan,et al.  Optimized Forest–Ruth- and Suzuki-like algorithms for integration of motion in many-body systems , 2002 .

[17]  B. Romanowicz,et al.  Modelling of coupled normal modes of the Earth: the spectral method , 1990 .

[18]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms , 2006 .

[19]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[20]  Martin Käser,et al.  Numerical simulation of 2D wave propagation on unstructured grids using explicit differential operators , 2001 .

[21]  Jean-Pierre Vilotte,et al.  Application of the spectral‐element method to the axisymmetric Navier–Stokes equation , 2004 .

[22]  Heiner Igel,et al.  SH-wave propagation in the whole mantle using high-order finite differences , 1995 .

[23]  Hiroshi Takenaka,et al.  Quasi-spherical approach for seismic wave modeling in a 2-D slice of a global Earth model with lateral heterogeneity , 2005 .

[24]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[25]  Hiroshi Takenaka,et al.  FDM computation of seismic wavefield for an axisymmetric earth with a moment tensor point source , 2006 .

[26]  Emmanuel Chaljub,et al.  Spectral element modelling of three-dimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core , 2003, physics/0308102.

[27]  Paul F. Fischer,et al.  Fast Parallel Direct Solvers for Coarse Grid Problems , 2001, J. Parallel Distributed Comput..

[28]  Kenji Kawai,et al.  Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media , 2006 .

[29]  Alexandre Fournier,et al.  A two‐dimensional spectral‐element method for computing spherical‐earth seismograms – I. Moment‐tensor source , 2007 .

[30]  Heiner Igel,et al.  P‐SV wave propagation in the Earth's mantle using finite differences: Application to heterogeneous lowermost mantle structure , 1996 .

[31]  Complete characterization of fourth-order symplectic integrators with extended-linear coefficients. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[33]  Jean-Pierre Vilotte,et al.  Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids , 2003 .

[34]  Robert J. Geller,et al.  Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the Direct Solution Method , 1994 .