A 2‐D spectral‐element method for computing spherical‐earth seismograms—II. Waves in solid–fluid media
暂无分享,去创建一个
[1] Alexandre Fournier,et al. Spherical‐earth Fréchet sensitivity kernels , 2007 .
[2] G. Quispel,et al. Geometric integrators for ODEs , 2006 .
[3] S. Reich,et al. Symplectic Time‐Stepping for Particle Methods , 2004 .
[4] F. Scherbaum,et al. Acoustic simulation of P‐wave propagation in a heterogeneous spherical earth: numerical method and application to precursor waves to PKPdf , 2000 .
[5] Emmanuel Chaljub. Modélisation numérique de la propagation d'ondes sismiques en géométrie sphérique : application à la sismologie globale , 2000 .
[6] Wolfgang Friederich,et al. COMPLETE SYNTHETIC SEISMOGRAMS FOR A SPHERICALLY SYMMETRIC EARTH BY A NUMERICAL COMPUTATION OF THE GREEN'S FUNCTION IN THE FREQUENCY DOMAIN , 1995 .
[7] Robert I. McLachlan. Families of High-Order Composition Methods , 2004, Numerical Algorithms.
[8] Robert J. Geller,et al. DSM complete synthetic seismograms : SH, spherically symmetric, case , 1994 .
[9] Emmanuel Chaljub,et al. Sensitivity of SS precursors to topography on the upper‐mantle 660‐km discontinuity , 1997 .
[10] C. Scovel,et al. Symplectic integration of Hamiltonian systems , 1990 .
[11] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[12] Jean-Pierre Vilotte,et al. Triangular Spectral Element simulation of two-dimensional elastic wave propagation using unstructured triangular grids , 2006 .
[13] Igor P. Omelyan,et al. Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations , 2003 .
[14] D. Komatitsch,et al. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.
[15] G. Quispel,et al. Foundations of Computational Mathematics: Six lectures on the geometric integration of ODEs , 2001 .
[16] Igor Omelyan,et al. Optimized Forest–Ruth- and Suzuki-like algorithms for integration of motion in many-body systems , 2002 .
[17] B. Romanowicz,et al. Modelling of coupled normal modes of the Earth: the spectral method , 1990 .
[18] M. Dumbser,et al. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms , 2006 .
[19] J. Tromp,et al. Theoretical Global Seismology , 1998 .
[20] Martin Käser,et al. Numerical simulation of 2D wave propagation on unstructured grids using explicit differential operators , 2001 .
[21] Jean-Pierre Vilotte,et al. Application of the spectral‐element method to the axisymmetric Navier–Stokes equation , 2004 .
[22] Heiner Igel,et al. SH-wave propagation in the whole mantle using high-order finite differences , 1995 .
[23] Hiroshi Takenaka,et al. Quasi-spherical approach for seismic wave modeling in a 2-D slice of a global Earth model with lateral heterogeneity , 2005 .
[24] P. Fischer,et al. High-Order Methods for Incompressible Fluid Flow , 2002 .
[25] Hiroshi Takenaka,et al. FDM computation of seismic wavefield for an axisymmetric earth with a moment tensor point source , 2006 .
[26] Emmanuel Chaljub,et al. Spectral element modelling of three-dimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core , 2003, physics/0308102.
[27] Paul F. Fischer,et al. Fast Parallel Direct Solvers for Coarse Grid Problems , 2001, J. Parallel Distributed Comput..
[28] Kenji Kawai,et al. Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media , 2006 .
[29] Alexandre Fournier,et al. A two‐dimensional spectral‐element method for computing spherical‐earth seismograms – I. Moment‐tensor source , 2007 .
[30] Heiner Igel,et al. P‐SV wave propagation in the Earth's mantle using finite differences: Application to heterogeneous lowermost mantle structure , 1996 .
[31] Complete characterization of fourth-order symplectic integrators with extended-linear coefficients. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[32] D. Komatitsch,et al. Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .
[33] Jean-Pierre Vilotte,et al. Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids , 2003 .
[34] Robert J. Geller,et al. Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the Direct Solution Method , 1994 .