Picosecond heat pulse propagation in single-wall carbon nanotubes

The propagation of picosecond duration heat pulses in single wall carbon nanotubes has been investigated using Molecular Dynamics simulations. It is found that the picosecond heat pulse in (10,0) and (5,5) induces several waves that propagate at different propagation speeds. The leading waves move at the speed of sound corresponds to LA phonons, followed by waves moving at TW phonon modes. The heat energy content in the waves corresponding to LA phonon modes in (10,0) zigzag nanotubes is significantly larger than in (5,5) armchair nanotubes.