Dynamic consistent correlation-variational approach for robust optical flow estimation

We present in this paper a novel combined scheme dedicated to the measurement of velocity in fluid experimental flows through image sequences. The proposed technique satisfies the Navier–Stokes equations and combines the robustness of correlation techniques with the high density of global variational methods. It can be considered either as a reenforcement of fluid dedicated optical-flow methods towards robustness, or as an enhancement of correlation approaches towards dense information. This results in a physics-based technique that is robust under noise and outliers, while providing a dense motion field. The method was applied on synthetic images and on real experiments in turbulent flows carried out to allow a thorough comparison with a state of the art variational and correlation methods.

[1]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[2]  Jerry Westerweel,et al.  The EUROPIV syntheetic image generator (SIG) , 2004 .

[3]  Nicolas Papadakis,et al.  Layered Estimation of Atmospheric Mesoscale Dynamics From Satellite Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[4]  A. Chorin Numerical study of slightly viscous flow , 1973, Journal of Fluid Mechanics.

[5]  Gösta H. Granlund,et al.  Optical Flow Based on the Inertia Matrix of the Frequency Domain , 1988 .

[6]  Christoph Schnörr,et al.  Variational fluid flow measurements from image sequences: synopsis and perspectives , 2010 .

[7]  Jing Yuan,et al.  Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation , 2005, Journal of Mathematical Imaging and Vision.

[8]  Shigeru Nishio,et al.  Image measurement of flow field using physics-based dynamic model , 2000 .

[9]  Nicolas Papadakis,et al.  Dynamically consistent optical flow estimation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[10]  Anne Cuzol,et al.  A Low Dimensional Fluid Motion Estimator , 2007, International Journal of Computer Vision.

[11]  Timo Kohlberger,et al.  Variational Dense Motion Estimation Using the Helmholtz Decomposition , 2003, Scale-Space.

[12]  Timo Kohlberger,et al.  Variational optical flow estimation for particle image velocimetry , 2005 .

[13]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[14]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[15]  E. Lamballais,et al.  Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900 , 2008 .

[16]  David Suter,et al.  Motion estimation and vector splines , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[17]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[18]  C. Schnörr,et al.  Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization , 2007 .

[19]  Joachim Weickert,et al.  Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods , 2005, International Journal of Computer Vision.

[20]  Christian J. Kähler,et al.  Fundamentals of multiframe particle image velocimetry (PIV) , 2007 .

[21]  Anne Cuzol,et al.  A stochastic filter for fluid motion tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[22]  Peter Stansby,et al.  The effects of end plates on the base pressure coefficient of a circular cylinder , 1974, The Aeronautical Journal (1968).

[23]  Michel Stanislas,et al.  Main results of the third international PIV Challenge , 2008 .

[24]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[25]  Tianshu Liu,et al.  Fluid flow and optical flow , 2008, Journal of Fluid Mechanics.

[26]  Michael J. Black,et al.  The robust estimation of multiple motions: Affine and piecewise smooth flow fields , 1993 .

[27]  J. Weickert,et al.  Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods , 2005 .

[28]  L. Alvarez,et al.  Variational second order flow estimation for PIV sequences , 2008 .

[29]  Joachim Weickert,et al.  Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.

[30]  Patrick Pérez,et al.  Dense Estimation of Fluid Flows , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  T. Corpetti,et al.  Fluid experimental flow estimation based on an optical-flow scheme , 2006 .

[32]  N. Mansour Large-eddy simulation of a turbulent mixing layer , 1978 .

[33]  C. Schnörr,et al.  Optical Stokes Flow Estimation: An Imaging‐Based Control Approach , 2006 .

[34]  J. Westerweel,et al.  Efficient detection of spurious vectors in particle image velocimetry data , 1994 .

[35]  C. Schnörr,et al.  Optical Stokes flow estimation: an imaging-based control approach , 2006 .