CMB observations and the production of chemical elements at the end of the dark ages

The metallicity evolution and ionization history of the universe must leave its imprint on the Cosmic Microwave Background through resonant scattering of CMB photons by atoms, ions and molecules. These transitions partially erase origi- nal temperature anisotropies of the CMB, and also generate new fluctuations. In this paper we propose a method to determine the abundance of these heavy species in low density (over-densities less than 10 4 −10 5 ) optically thin regions of the universe by using the unprecedented sensitivity of current and future CMB experiments. In particular, we focus our analysis on the sensitivity of the Planck HFI detectors in four spectral bands. We also present results for l = 220 and 810 which are of interest for balloon and ground-based instruments, like ACT, APEX and SPT. We use the fine-structure transitions of atoms and ions as a source of frequency dependent optical depth (τν). These transitions give different contributions to the power spectrum of CMB in different observing channels. By comparing results from those channels, it is possible to avoid the limit imposed by the cosmic variance and to extract information about the abundance of corresponding species at the redshift of scattering. For Planck HFI we will be able to get strong constraints (10 −4 −10 −2 solar fraction) on the abundances of neutral atoms like C, O, Si, S, and Fe in the redshift range 1−50. Fine-structure transitions of ions like CII, NII or OIII set similar limits in the very important redshift range 3−25 and can be used to probe the ionization history of the universe. Foregrounds and other frequency dependent contaminants may set a serious limitation for this method.

[1]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[2]  Anil K. Pradhan,et al.  The Analysis of Emission Lines: Atomic Data for the Analysis of Emission Lines , 1995 .

[3]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[4]  S. Penton,et al.  The Local Lyα Forest. II. Distribution of H I Absorbers,Doppler Widths, and Baryon Content , 1999, astro-ph/9911128.

[5]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[6]  Sugiyama,et al.  Small scale integrated Sachs-Wolfe effect. , 1994, Physical review. D, Particles and fields.

[7]  M. Dietrich,et al.  Fe II/Mg II Emission-Line Ratio in High-Redshift Quasars , 2003 .

[8]  L. Knox,et al.  Determination of inflationary observables by cosmic microwave background anisotropy experiments. , 1995, Physical review. D, Particles and fields.

[9]  A. Goobar,et al.  Cosmology and Particle Astrophysics , 1999 .

[10]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[11]  A. Jaffe,et al.  Secondary Cosmic Microwave Background Anisotropies from Cosmological Reionization , 2000, astro-ph/0008469.

[12]  F. Bouchet,et al.  Cosmic microwave background polarization data and galactic foregrounds: estimation of cosmological parameters , 2000 .

[13]  The rms peculiar velocity of galaxy clusters for different cluster masses and radii , 2002, astro-ph/0203166.

[14]  Probing the Universe after Cosmological Recombination through the Effect of Neutral Lithium on the Microwave Background Anisotropies , 2001, astro-ph/0103505.

[15]  Martin J. Rees,et al.  21 CENTIMETER TOMOGRAPHY OF THE INTERGALACTIC MEDIUM AT HIGH REDSHIFT , 1996 .

[16]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[17]  D. Spergel,et al.  Detecting z > 10 Objects through Carbon, Nitrogen, and Oxygen Emission Lines , 1998, astro-ph/9803236.

[18]  A. Hu,et al.  Secondary Cosmic Microwave Background Anisotropies in a Universe Reionized in Patches , 1998, astro-ph/9803188.

[19]  Hydrodynamical simulations of the Sunyaev-Zel'dovich effect , 1999, astro-ph/9907224.

[20]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions , 2003, astro-ph/0302214.

[21]  M. White,et al.  Hydrodynamic Simulations of the Sunyaev-Zeldovich Effect(s) , 2000, astro-ph/0008133.

[22]  S. E. Woosley,et al.  The Nucleosynthetic Signature of Population III , 2002 .

[23]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .

[24]  R. Sunyaev,et al.  Polarization of resonance X-ray lines from clusters of galaxies , 2001, astro-ph/0112382.

[25]  M. Zaldarriaga,et al.  The Imprint of Lithium Recombination on the Microwave Background Anisotropies , 2001, astro-ph/0105345.

[26]  Ethan T. Vishniac,et al.  Reionization and small-scale fluctuations in the microwave background , 1987 .

[27]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .

[28]  J. Bally,et al.  Parsec-Scale CO Outflow and H2 Jets in Barnard 5 , 1999 .

[29]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing Methods and Systematic Error Limits , 2003, astro-ph/0302222.

[30]  The redshift evolution of bias and baryonic matter distribution , 2000, astro-ph/0001207.

[31]  D. Eisenstein,et al.  Cosmic Complementarity: Joint Parameter Estimation from Cosmic Microwave Background Experiments and Redshift Surveys , 1998, astro-ph/9807130.

[32]  M. Fukugita,et al.  THE COSMIC BARYON BUDGET , 1997, astro-ph/9712020.

[33]  The Universe Was Reionized Twice , 2002, astro-ph/0210473.

[34]  D. Spergel,et al.  Rayleigh Scattering and Microwave Background Fluctuations , 2001, astro-ph/0103149.

[35]  K. Korista,et al.  Iron Emission in z ≈ 6 QSOS , 2003, astro-ph/0303424.

[36]  R. Cen,et al.  Where Are the Baryons , 1998, astro-ph/9806281.

[37]  Jeremiah P. Ostriker,et al.  Generation of microwave background fluctuations from nonlinear perturbations at the era of galaxy formation , 1986 .

[38]  C. Bennett,et al.  Measurement of the Cosmic Microwave Background spectrum by the COBE FIRAS instrument , 1994 .

[39]  Joannes Vandermeulen,et al.  Cosmology and particles. , 1982 .

[40]  Y. Zel’dovich,et al.  On the Possibility of Radioastronomical Investigation of the Birth of Galaxies , 1975 .

[41]  Max Tegmark,et al.  Foregrounds and Forecasts for the Cosmic Microwave Background , 2000 .