Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: A metabolomic analysis.

[1]  M. Meselson,et al.  DNA Restriction Enzyme from E. coli , 1968, Nature.

[2]  J Messing,et al.  A system for shotgun DNA sequencing. , 1981, Nucleic acids research.

[3]  C. Harwood Bacillus subtilis and its relatives: molecular biological and industrial workhorses. , 1992, Trends in biotechnology.

[4]  R. Gross,et al.  Effects of pH and aeration on gamma-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. , 1996, Biotechnology and bioengineering.

[5]  Y. Ogawa,et al.  Detection of γ-Polyglutamic Acid (γ-PGA) by SDS-Page. , 1996, Bioscience, biotechnology, and biochemistry.

[6]  Y. Ogawa,et al.  Efficient Production of γ-Polyglutamic Acid by Bacillus subtilis (natto) in Jar Fermenters. , 1997, Bioscience, biotechnology, and biochemistry.

[7]  U. Sauer,et al.  Metabolic fluxes in riboflavin-producing Bacillus subtilis , 1997, Nature Biotechnology.

[8]  L. Christiansen,et al.  Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism , 1997, Journal of bacteriology.

[9]  J E Bailey,et al.  Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. , 1998, Biotechnology and bioengineering.

[10]  S. Fisher,et al.  Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence! , 1999, Molecular microbiology.

[11]  S. Tokuyama,et al.  Difference in transcription levels of cap genes for gamma-polyglutamic acid production between Bacillus subtilis IFO 16449 and Marburg 168. , 2002, Journal of bioscience and bioengineering.

[12]  H. Westerhoff,et al.  The Glycolytic Flux in Escherichia coli Is Controlled by the Demand for ATP , 2002, Journal of bacteriology.

[13]  M. Kunioka,et al.  Biosynthesis of poly (γ-glutamic acid) from l-glutamine, citric acid and ammonium sulfate in Bacillus subtilis IFO3335 , 1994, Applied Microbiology and Biotechnology.

[14]  Ajay Singh,et al.  Developments in the use of Bacillus species for industrial production. , 2004, Canadian journal of microbiology.

[15]  M. Kunioka,et al.  Biosynthesis of poly(γ-glutamic acid) from l-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335 , 2004, Applied Microbiology and Biotechnology.

[16]  Nicola Zamboni,et al.  The Bacillus subtilis yqjI Gene Encodes the NADP+-Dependent 6-P-Gluconate Dehydrogenase in the Pentose Phosphate Pathway , 2004, Journal of bacteriology.

[17]  Christian Solem,et al.  Experimental determination of control of glycolysis in Lactococcus lactis , 2002, Antonie van Leeuwenhoek.

[18]  M. Sung,et al.  Synthesis of super-high-molecular-weight poly-γ-glutamic acid by Bacillus subtilis subsp. chungkookjang , 2005 .

[19]  M. Ashiuchi,et al.  Salt-Inducible Bionylon Polymer from Bacillus megaterium , 2007, Applied and Environmental Microbiology.

[20]  A. Sonenshein,et al.  Control of key metabolic intersections in Bacillus subtilis , 2007, Nature Reviews Microbiology.

[21]  Fabian M. Commichau,et al.  Glutamate Metabolism in Bacillus subtilis: Gene Expression and Enzyme Activities Evolved To Avoid Futile Cycles and To Allow Rapid Responses to Perturbations of the System , 2008, Journal of bacteriology.

[22]  M. Ogura,et al.  Bacillus subtilis Response Regulator DegU Is a Direct Activator of pgsB Transcription Involved in γ-Poly-glutamic Acid Synthesis , 2009, Bioscience, biotechnology, and biochemistry.

[23]  F. Zhu,et al.  High yield and cost‐effective production of poly(γ‐glutamic acid) with Bacillus subtilis , 2011 .

[24]  Shufang Wang,et al.  Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. , 2011, Bioresource technology.

[25]  Martin Siemann-Herzberg,et al.  Self-Inducible Bacillus subtilis Expression System for Reliable and Inexpensive Protein Production by High-Cell-Density Fermentation , 2011, Applied and Environmental Microbiology.

[26]  Anyi Zhang,et al.  High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10. , 2012, Bioresource technology.

[27]  K. Gunka,et al.  Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation , 2012, Molecular microbiology.

[28]  A. Galizzi,et al.  Knockout of pgdS and ggt genes improves γ‐PGA yield in B. subtilis , 2013, Biotechnology and bioengineering.

[29]  Q. Zheng,et al.  The main byproducts and metabolic flux profiling of γ-PGA-producing strain B. subtilis ZJU-7 under different pH values. , 2013, Journal of biotechnology.

[30]  M. Ashiuchi Microbial production and chemical transformation of poly-γ-glutamate , 2013, Microbial biotechnology.

[31]  Hong Xu,et al.  Enhanced poly(γ-glutamic acid) fermentation by Bacillus subtilis NX-2 immobilized in an aerobic plant fibrous-bed bioreactor. , 2014, Bioresource technology.

[32]  J. Altenbuchner,et al.  Development of a markerless gene deletion system for Bacillus subtilis based on the mannose phosphoenolpyruvate-dependent phosphotransferase system. , 2015, Microbiology.

[33]  Chao Yang,et al.  Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. , 2015, Metabolic engineering.

[34]  A. Bhat,et al.  Poly-γ-glutamic acid: production, properties and applications. , 2015, Microbiology.

[35]  L. Blank,et al.  GC-MS-Based Determination of Mass Isotopomer Distributions for 13 C-Based Metabolic Flux Analysis , 2015 .

[36]  Raphael H. Michna,et al.  SubtiWiki 2.0—an integrated database for the model organism Bacillus subtilis , 2015, Nucleic Acids Res..

[37]  J. Pérez-Ortín,et al.  Growth rate controls mRNA turnover in steady and non-steady states , 2016, RNA biology.

[38]  Thomas G. Palmen,et al.  Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945. , 2016, Journal of bioscience and bioengineering.

[39]  L. Blank,et al.  Creating metabolic demand as an engineering strategy in Pseudomonas putida – Rhamnolipid synthesis as an example , 2016, Metabolic engineering communications.

[40]  Mouming Zhao,et al.  Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives , 2016, Biotechnology for Biofuels.

[41]  Y. Chisti,et al.  Enhanced Production of Poly-γ-glutamic Acid by Bacillus licheniformis TISTR 1010 with Environmental Controls , 2017, Applied Biochemistry and Biotechnology.

[42]  Z. Wen,et al.  A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02 , 2017, Scientific Reports.

[43]  G. Adamus,et al.  Bacterial-Derived Polymer Poly-γ-Glutamic Acid (γ-PGA)-Based Micro/Nanoparticles as a Delivery System for Antimicrobials and Other Biomedical Applications , 2017, International journal of molecular sciences.

[44]  Uwe Völker,et al.  Large-scale reduction of the Bacillus subtilis genome: consequences for the transcriptional network, resource allocation, and metabolism , 2017, Genome research.

[45]  E. Fukusaki,et al.  Development of a liquid chromatography-tandem mass spectrometry method for quantitative analysis of trace d-amino acids. , 2017, Journal of bioscience and bioengineering.

[46]  Y. Chisti,et al.  Microbial production of poly-γ-glutamic acid , 2017, World journal of microbiology & biotechnology.

[47]  J. Liao,et al.  Iterative cycle of widely targeted metabolic profiling for the improvement of 1-butanol titer and productivity in Synechococcus elongatus , 2018, Biotechnology for Biofuels.

[48]  M. L. Focarete,et al.  Poly-Gamma-Glutamic Acid (γ-PGA)-Based Encapsulation of Adenovirus to Evade Neutralizing Antibodies , 2018, Molecules.

[49]  E. Fukusaki,et al.  Tailor-made poly-γ-glutamic acid production. , 2019, Metabolic engineering.

[50]  E. Fukusaki,et al.  Comparison of Isomerase and Weimberg Pathway for γ-PGA Production From Xylose by Engineered Bacillus subtilis , 2020, Frontiers in Bioengineering and Biotechnology.

[51]  E. Fukusaki,et al.  Identification of Key Metabolites in Poly-γ-Glutamic Acid Production by Tuning γ-PGA Synthetase Expression , 2020, Frontiers in Bioengineering and Biotechnology.