New adaptive controller method for SMA hysteresis modelling of a morphing wing

A neuro-fuzzy controller method for smart material actuator (SMA) hysteresis modelling is presented, conceived for a morphing wing application. The controller correlates each set of forces and electrical currents that are applied to the smart material actuators with the actuator elongation. The actuator is experimentally tested for four forces, using a variable electrical current. The final controller is obtained through the Matlab/Simulink integration of three independent neuro-fuzzy controllers, designed for the increase and decrease of electrical current, and for null electrical current in the cooling phase of the actuator. This final controller gives a very small error with respect to the experimental values.