Velocity-Aided Underwater Navigation System Using Receding Horizon Kalman Filter

This paper discusses the problems related to constructing a receding horizon filter for underwater inertial navigation systems which are subject to external disturbances. Noises are assumed to be bounded, additive, and contained in both state and measurement equations. An estimator is designed according to the sliding-window strategy to minimize the receding horizon estimation cost function. The derived filter is applied to a velocity-aided inertial navigation system. Simulations show that the derived filter is more accurate than the standard Kalman filter (KF) for underwater navigation systems subject to temporary unknown disturbances

[1]  W. Kwon,et al.  On feedback stabilization of time-varying discrete linear systems , 1978 .

[2]  A. B. Chatfield Fundamentals of high accuracy inertial navigation , 1997 .

[3]  S. Beiter,et al.  Precision hybrid navigation system for varied marine applications , 1998, IEEE 1998 Position Location and Navigation Symposium (Cat. No.98CH36153).

[4]  Chan Gook Park,et al.  Strapdown INS error model for multiposition alignment , 1996 .

[5]  Wook Hyun Kwon,et al.  Fast algorithms for optimal FIR filter and smoother of discrete-time state-space models , 1994, Autom..

[6]  A. Jazwinski Limited memory optimal filtering , 1968 .

[7]  Wook Hyun Kwon,et al.  A receding horizon Kalman FIR filter for discrete time-invariant systems , 1999, IEEE Trans. Autom. Control..

[8]  G. J. Bierman Fixed memory least squares filtering , 1975 .

[9]  Shaojun Wei,et al.  Advances in the state of the art for AUV inertial sensors and navigation systems , 1994, Proceedings of IEEE Symposium on Autonomous Underwater Vehicle Technology (AUV'94).

[10]  John Doyle,et al.  A receding horizon generalization of pointwise min-norm controllers , 2000, IEEE Trans. Autom. Control..

[11]  M. Uliana,et al.  The navigation system of an autonomous underwater vehicle for Antarctic exploration , 1997, Oceans '97. MTS/IEEE Conference Proceedings.

[12]  D. Mayne,et al.  Robust receding horizon control of constrained nonlinear systems , 1993, IEEE Trans. Autom. Control..

[13]  Daniel J. Biezad,et al.  Integrated navigation and guidance systems , 1999 .

[14]  Wook Hyun Kwon,et al.  FIR filters and recursive forms for discrete-time state-space models , 1987, Autom..

[15]  A. J. Marco,et al.  Command, Control and Navigation: Experimental Results with the NPS , 2001 .

[16]  Arthur G. O. Mutambara,et al.  Decentralized Estimation and Control for Multisensor Systems , 2019 .

[17]  Gerald J. Bierman Fixed memory least squares filtering (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[18]  M. B. Larsen,et al.  Synthetic long baseline navigation of underwater vehicles , 2000, OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158).

[19]  Guillermo C. Gaunaurd,et al.  Acoustic scattering by an air-bubble near the sea surfaceacoustic scattering by an air-bubble near the sea surface , 1995, IEEE Journal of Oceanic Engineering.

[20]  M. B. Larsen,et al.  High performance Doppler-inertial navigation-experimental results , 2000, OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158).