Data‐driven integration of hippocampal CA1 synaptic physiology in silico

The anatomy and physiology of monosynaptic connections in rodent hippocampal CA1 have been extensively studied in recent decades. Yet, the resulting knowledge remains disparate and difficult to reconcile. Here, we present a data‐driven approach to integrate the current state‐of‐the‐art knowledge on the synaptic anatomy and physiology of rodent hippocampal CA1, including axo‐dendritic innervation patterns, number of synapses per connection, quantal conductances, neurotransmitter release probability, and short‐term plasticity into a single coherent resource. First, we undertook an extensive literature review of paired recordings of hippocampal neurons and compiled experimental data on their synaptic anatomy and physiology. The data collected in this manner is sparse and inhomogeneous due to the diversity of experimental techniques used by different groups, which necessitates the need for an integrative framework to unify these data. To this end, we extended a previously developed workflow for the neocortex to constrain a unifying in silico reconstruction of the synaptic physiology of CA1 connections. Our work identifies gaps in the existing knowledge and provides a complementary resource toward a more complete quantification of synaptic anatomy and physiology in the rodent hippocampal CA1 region.

[1]  Simon J. Mitchell,et al.  Direct measurement of somatic voltage clamp errors in central neurons , 2008, Nature Neuroscience.

[2]  Alex M Thomson,et al.  Physiological and morphological diversity of immunocytochemically defined parvalbumin‐ and cholecystokinin‐positive interneurones in CA1 of the adult rat hippocampus , 2002, The Journal of comparative neurology.

[3]  B. Sakmann,et al.  Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell‐specific difference in presynaptic calcium dynamics , 2001, The Journal of physiology.

[4]  N. Spruston,et al.  Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. , 1995, The Journal of physiology.

[5]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[7]  B. Sakmann,et al.  Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. , 1993, The Journal of physiology.

[8]  James G. King,et al.  An algorithm to predict the connectome of neural microcircuits , 2015, Front. Comput. Neurosci..

[9]  P. Somogyi,et al.  Properties of unitary IPSPs evoked by anatomically identified basket cells in the rat hippocampus , 1995, The European journal of neuroscience.

[10]  D. Rusakov,et al.  Slow GABA Transient and Receptor Desensitization Shape Synaptic Responses Evoked by Hippocampal Neurogliaform Cells , 2010, The Journal of Neuroscience.

[11]  J. Deuchars,et al.  Modulation of bistratified cell IPSPs and basket cell IPSPs by pentobarbitone sodium, diazepam and Zn2+: dual recordings in slices of adult rat hippocampus , 1999, The European journal of neuroscience.

[12]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[13]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[14]  J. Deuchars,et al.  CA1 pyramid-pyramid connections in rat hippocampus in vitro: Dual intracellular recordings with biocytin filling , 1996, Neuroscience.

[15]  Z. Nusser,et al.  Release Probability-Dependent Scaling of the Postsynaptic Responses at Single Hippocampal GABAergic Synapses , 2006, The Journal of Neuroscience.

[16]  N. Spruston,et al.  Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events. , 1993, Journal of neurophysiology.

[17]  J. Lisman,et al.  The high variance of AMPA receptor- and NMDA receptor-mediated responses at single hippocampal synapses: Evidence for multiquantal release , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Attila Losonczy,et al.  Cell type dependence and variability in the short‐term plasticity of EPSCs in identified mouse hippocampal interneurones , 2002, The Journal of physiology.

[19]  Henry Markram,et al.  BluePyOpt: Leveraging Open Source Software and Cloud Infrastructure to Optimise Model Parameters in Neuroscience , 2016, Front. Neuroinform..

[20]  Michael L. Hines,et al.  Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors , 2008, Journal of Computational Neuroscience.

[21]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[22]  J. Poncer,et al.  Input‐specific learning rules at excitatory synapses onto hippocampal parvalbumin‐expressing interneurons , 2013, The Journal of physiology.

[23]  S. Káli,et al.  The Effects of Realistic Synaptic Distribution and 3D Geometry on Signal Integration and Extracellular Field Generation of Hippocampal Pyramidal Cells and Inhibitory Neurons , 2016, Front. Neural Circuits.

[24]  Nicholas T. Carnevale,et al.  Expanding NEURON's Repertoire of Mechanisms with NMODL , 2000, Neural Computation.

[25]  A. Thomson,et al.  Facilitating pyramid to horizontal oriens‐alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus , 1998, The Journal of physiology.

[26]  Henry Markram,et al.  Coding of temporal information by activity-dependent synapses. , 2002, Journal of neurophysiology.

[27]  T. Bliss,et al.  Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide , 2013, Molecular Brain.

[28]  Peter Somogyi,et al.  Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro , 2000, The Journal of physiology.

[29]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[30]  P. Somogyi,et al.  Unitary IPSPs evoked by interneurons at the stratum radiatum‐stratum lacunosum‐moleculare border in the CA1 area of the rat hippocampus in vitro , 1998, The Journal of physiology.

[31]  Gabor Szabo,et al.  Asynchronous Transmitter Release from Cholecystokinin-Containing Inhibitory Interneurons Is Widespread and Target-Cell Independent , 2009, The Journal of Neuroscience.

[32]  D. Rusakov,et al.  GABAB Receptor Modulation of Feedforward Inhibition through Hippocampal Neurogliaform Cells , 2008, The Journal of Neuroscience.

[33]  M. Frotscher,et al.  Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  James G. King,et al.  The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex , 2015, Front. Neural Circuits.

[35]  Henry Markram,et al.  Multiquantal release underlies the distribution of synaptic effi cacies in the neocortex , 2022 .

[36]  Marco Capogna,et al.  Neurogliaform Neurons Form a Novel Inhibitory Network in the Hippocampal CA1 Area , 2005, The Journal of Neuroscience.

[37]  Michael Häusser,et al.  Dendritic NMDA receptors in parvalbumin neurons enable strong and stable neuronal assemblies , 2019, eLife.

[38]  G. Buzsáki Two-stage model of memory trace formation: A role for “noisy” brain states , 1989, Neuroscience.

[39]  Attila Losonczy,et al.  Parvalbumin-Positive Basket Cells Differentiate among Hippocampal Pyramidal Cells , 2014, Neuron.

[40]  H. Markram,et al.  Data-driven integration of hippocampal CA1 synapse physiology in silico , 2019, bioRxiv.

[41]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Szabolcs Káli,et al.  The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow , 2018, PLoS Comput. Biol..

[43]  A. Thomson,et al.  IPSPs elicited in CA1 pyramidal cells by putative basket cells in slices of adult rat hippocampus , 1999, The European journal of neuroscience.

[44]  N. Tamamaki,et al.  Hippocampal pyramidal cells excite inhibitory neurons through a single release site , 1993, Nature.

[45]  S. Káli,et al.  Properties and dynamics of inhibitory synaptic communication within the CA3 microcircuits of pyramidal cells and interneurons expressing parvalbumin or cholecystokinin , 2016, The Journal of physiology.

[46]  C. McBain,et al.  Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity , 2013, Nature Neuroscience.

[47]  M. Häusser,et al.  Dendritic NMDA receptors in parvalbumin neurons enable strong and stable neuronal assemblies , 2018, bioRxiv.

[48]  A. Hill,et al.  The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves , 1910 .

[49]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[50]  R. Nicoll,et al.  Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices , 1990, Neuron.

[51]  K. Deisseroth,et al.  Dendritic Inhibition Provided by Interneuron-Specific Cells Controls the Firing Rate and Timing of the Hippocampal Feedback Inhibitory Circuitry , 2014, The Journal of Neuroscience.

[52]  J. Deuchars,et al.  CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices , 1998, The Journal of physiology.

[53]  C. Jahr,et al.  Multivesicular Release at Schaffer Collateral–CA1 Hippocampal Synapses , 2006, The Journal of Neuroscience.

[54]  P. Somogyi,et al.  Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus , 1997, Neuroscience.

[55]  I. Módy,et al.  Diversity of inhibitory neurotransmission through GABAA receptors , 2004, Trends in Neurosciences.

[56]  S. Nelson,et al.  The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices. , 2003, Journal of neurophysiology.

[57]  Afia B Ali,et al.  Presynaptic Inhibition of GABAA receptor-mediated unitary IPSPs by cannabinoid receptors at synapses between CCK-positive interneurons in rat hippocampus. , 2007, Journal of neurophysiology.

[58]  Segundo Jose Guzman,et al.  Parvalbumin+ interneurons obey unique connectivity rules and establish a powerful lateral-inhibition microcircuit in dentate gyrus , 2018, Nature Communications.

[59]  Alois Schlögl,et al.  Synaptic mechanisms of pattern completion in the hippocampal CA3 network , 2016, Science.

[60]  C. Stevens,et al.  Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  Michael L. Hines,et al.  Fully implicit parallel simulation of single neurons , 2008, Journal of Computational Neuroscience.

[62]  B. Gustafsson,et al.  Spontaneous Unitary Synaptic Activity in CA1 Pyramidal Neurons during Early Postnatal Development: Constant Contribution of AMPA and NMDA Receptors , 2002, The Journal of Neuroscience.

[63]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.

[64]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[65]  Z. Nusser,et al.  Quantal Size Is Independent of the Release Probability at Hippocampal Excitatory Synapses , 2005, The Journal of Neuroscience.

[66]  Jason C. Wester,et al.  Hippocampal GABAergic Inhibitory Interneurons. , 2017, Physiological reviews.

[67]  J. Magee,et al.  Distance-Dependent Increase in AMPA Receptor Number in the Dendrites of Adult Hippocampal CA1 Pyramidal Neurons , 2001, The Journal of Neuroscience.

[68]  H Markram,et al.  Estimating the Readily-Releasable Vesicle Pool Size at Synaptic Connections in a Neocortical Microcircuit , 2019, bioRxiv.

[69]  Enrico Cherubini,et al.  At Immature Mossy Fibers-CA3 Connections, Activation of Presynaptic GABAB Receptors by Endogenously Released GABA Contributes to Synapses Silencing , 2008, Front. Cell. Neurosci..

[70]  H. Markram,et al.  Differential signaling via the same axon of neocortical pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Susan E Atkinson,et al.  Pathway‐specific use‐dependent dynamics of excitatory synaptic transmission in rat intracortical circuits , 2007, The Journal of physiology.

[72]  Thomas Klausberger,et al.  Extrinsic and local glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons , 2012, Hippocampus.

[73]  C. L. Rees,et al.  Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus , 2015, eLife.

[74]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[75]  Robert J. Morgan,et al.  Regulation of Fast-Spiking Basket Cell Synapses by the Chloride Channel ClC–2 , 2010, Nature Neuroscience.

[76]  Ivan Raikov,et al.  Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit , 2016, eLife.

[77]  Z. Nusser,et al.  Target Cell Type-Dependent Differences in Ca2+ Channel Function Underlie Distinct Release Probabilities at Hippocampal Glutamatergic Terminals , 2017, The Journal of Neuroscience.

[78]  G. A. Ascoli,et al.  Non-homogeneous stereological properties of the rat hippocampus from high-resolution 3D serial reconstruction of thin histological sections , 2012, Neuroscience.

[79]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[80]  H. Markram,et al.  Estimating the Readily-Releasable Vesicle Pool Size at Synaptic Connections in the Neocortex , 2019, Front. Synaptic Neurosci..

[81]  Marco Capogna,et al.  Specific inhibitory synapses shift the balance from feedforward to feedback inhibition of hippocampal CA1 pyramidal cells , 2007, The European journal of neuroscience.

[82]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[83]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.

[84]  Keivan Moradi,et al.  A comprehensive knowledge base of synaptic electrophysiology in the rodent hippocampal formation , 2019, Hippocampus.

[85]  Gang Tong,et al.  Multivesicular release from excitatory synapses of cultured hippocampal neurons , 1994, Neuron.

[86]  Jozsef Csicsvari,et al.  Ivy Cells: A Population of Nitric-Oxide-Producing, Slow-Spiking GABAergic Neurons and Their Involvement in Hippocampal Network Activity , 2008, Neuron.

[87]  Henry Markram,et al.  Synapses as dynamic memory buffers , 2002, Neural Networks.

[88]  I. Dittert,et al.  Temperature dependence of N-methyl-d-aspartate receptor channels and N-methyl-d-aspartate receptor excitatory postsynaptic currents , 2010, Neuroscience.

[89]  E. Neher Correction for liquid junction potentials in patch clamp experiments. , 1992, Methods in enzymology.

[90]  James G. King,et al.  Intrinsic morphological diversity of thick‐tufted layer 5 pyramidal neurons ensures robust and invariant properties of in silico synaptic connections , 2012, The Journal of physiology.

[91]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[92]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[93]  Afia B Ali,et al.  CB1 modulation of temporally distinct synaptic facilitation among local circuit interneurons mediated by N-type calcium channels in CA1. , 2011, Journal of neurophysiology.

[94]  Ivan Soltesz,et al.  Quantitative assessment of CA1 local circuits: Knowledge base for interneuron‐pyramidal cell connectivity , 2013, Hippocampus.

[95]  P. Somogyi,et al.  Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. , 1994, Journal of neurophysiology.