IC S THE NONLINEAR GALERKIN METHOD : A MULTI-SCALE METHOD APPLIED TO THE SIMULATION OF HOMOGENEOUS TURBULENT FLOWS

Using results of DNS in the case of two-dimensional homogeneous isotropic flows, we first analyze in detail the behavior of the small and large scales of Kolmogorov-like flows at moderate Reynolds numbers. We derive several estimates on the time variations of the small eddies and the nonlinear interaction terms; these terms play the role of the Reynolds stress tensor in the case of LES. Since the time step of a numerical scheme is determined as a function of the energy-containing eddies of the flow, the variations of the small scales and of the nonlinear interaction terms over one iteration can become negligible by comparison with the accuracy of the computation. Based on this remark, we propose a multilevel scheme which treats the small and the large eddies differently. Using mathematical developments, we derive estimates of all the parameters involved in the algorithm, which then becomes a completely self-adaptative procedure. Finally, we perform realistic simulations of (Kolmogorov-like) flows over several eddy-turnover times. The results are analyzed in detail and a parametric study of the nonlinear Galerkin method is performed.

[1]  O. P. Manley The dissipation range spectrum , 1992 .

[2]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[3]  Roger Temam,et al.  The nonlinear Galerkin method in computational fluid dynamics , 1990 .

[4]  Charles G. Speziale,et al.  ANALYTICAL METHODS FOR THE DEVELOPMENT OF REYNOLDS-STRESS CLOSURES IN TURBULENCE , 1990 .

[5]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[6]  R. Temam,et al.  Modelling of the interaction of small and large eddies in two dimensional turbulent flows , 1988 .

[7]  Roger Temam,et al.  Qualitative Properties of Navier-Stokes Equations , 1978 .

[8]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.

[9]  D. Leslie,et al.  The application of turbulence theory to the formulation of subgrid modelling procedures , 1979, Journal of Fluid Mechanics.

[10]  R. Temam,et al.  Approximate inertial manifolds and effective viscosity in turbulent flows , 1991 .

[11]  P. Moin,et al.  Numerical investigation of turbulent channel flow , 1981, Journal of Fluid Mechanics.

[12]  R. Temam,et al.  Nonlinear Galerkin methods , 1989 .

[13]  François Jauberteau,et al.  Résolution numérique des équations de Navier-Stokes instationnaires par méthodes spectrales : méthode de Galerkin non linéaire , 1990 .

[14]  Chen,et al.  Far-dissipation range of turbulence. , 1993, Physical review letters.

[15]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[16]  R. Sadourny,et al.  Modélisation des échelles virtuelles dans la simulation numérique des écoulements turbulents bidimensionnels , 1983 .

[17]  Roger Temam,et al.  Inertial manifolds and multigrid methods , 1990 .

[18]  Hantaek Bae Navier-Stokes equations , 1992 .

[19]  Arnaud Debussche,et al.  Approximation of exponential order of the attractor of a turbulent flow , 1994 .

[20]  R. Temam,et al.  Determining modes and fractal dimension of turbulent flows , 1985, Journal of Fluid Mechanics.

[21]  David Montgomery,et al.  Two-Dimensional Turbulence , 2012 .

[22]  G. Batchelor,et al.  The theory of homogeneous turbulence , 1954 .

[23]  Roger Temam,et al.  A nonlinear Galerkin method for the Navier-Stokes equations , 1990 .

[24]  Gordon Erlebacher,et al.  Compressible homogeneous shear: Simulation and modeling , 1993 .

[25]  R. Temam Navier-Stokes Equations , 1977 .

[26]  Peter S. Bernard,et al.  The energy decay in self-preserving isotropic turbulence revisited , 1991, Journal of Fluid Mechanics.

[27]  R. Temam,et al.  Attractors for the Navier-Stokes equations: Iocalization and approximation , 1989 .

[28]  R. Temam,et al.  Solution of the incompressible Navier-Stokes equations by the nonlinear Galerkin method , 1993 .

[29]  R. Temam,et al.  Convergent families of approximate inertial manifolds , 1994 .

[30]  Marc Brachet,et al.  The dynamics of freely decaying two-dimensional turbulence , 1988, Journal of Fluid Mechanics.

[31]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986 .

[32]  Roger Temam,et al.  Induced trajectories and approximate inertial manifolds , 1989 .

[33]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[34]  G. Vahala,et al.  Renormalization-group theory for the eddy viscosity in subgrid modeling. , 1988, Physical review. A, General physics.

[35]  Lawrence Sirovich,et al.  Empirical and Stokes eigenfunctions and the far‐dissipative turbulent spectrum , 1990 .

[36]  W. C. Reynolds,et al.  The dissipation‐range spectrum and the velocity‐derivative skewness in turbulent flows , 1991 .

[37]  G. Vahala,et al.  Reformulation of recursive-renormalization-group-based subgrid modeling of turbulence. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  R. Temam,et al.  Nonlinear Galerkin methods: The finite elements case , 1990 .

[39]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[40]  R. Kraichnan,et al.  Decay of two-dimensional homogeneous turbulence , 1974, Journal of Fluid Mechanics.

[41]  Claude Basdevant,et al.  Nonlinear galerkin method and subgrid-scale model for two-dimensional turbulent flows , 1992 .

[42]  Marcel Lesieur,et al.  Turbulence in fluids , 1990 .

[43]  Jack K. Hale,et al.  Infinite dimensional dynamical systems , 1983 .

[44]  T. A. Zang,et al.  Toward the large-eddy simulation of compressible turbulent flows , 1990, Journal of Fluid Mechanics.

[45]  John L. Lumley,et al.  Computational Modeling of Turbulent Flows , 1978 .