A 3D Nonhydrostatic Compressible Atmospheric Dynamic Core by Multi-moment Constrained Finite Volume Method

A 3D compressible nonhydrostatic dynamic core based on a three-point multi-moment constrained finite-volume (MCV) method is developed by extending the previous 2D nonhydrostatic atmospheric dynamics to 3D on a terrain-following grid. The MCV algorithm defines two types of moments: the point-wise value (PV) and the volume-integrated average (VIA). The unknowns (PV values) are defined at the solution points within each cell and are updated through the time evolution formulations derived from the governing equations. Rigorous numerical conservation is ensured by a constraint on the VIA moment through the flux form formulation. The 3D atmospheric dynamic core reported in this paper is based on a three-point MCV method and has some advantages in comparison with other existing methods, such as uniform third-order accuracy, a compact stencil, and algorithmic simplicity. To check the performance of the 3D nonhydrostatic dynamic core, various benchmark test cases are performed. All the numerical results show that the present dynamic core is very competitive when compared to other existing advanced models, and thus lays the foundation for further developing global atmospheric models in the near future.

[1]  Mengping Zhang,et al.  An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods , 2005 .

[2]  Todd D. Ringler,et al.  A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .

[3]  Feng Xiao,et al.  A Multimoment Constrained Finite-Volume Model for Nonhydrostatic Atmospheric Dynamics , 2013 .

[4]  Amik St-Cyr,et al.  A Dynamic hp-Adaptive Discontinuous Galerkin Method for Shallow-Water Flows on the Sphere with Application to a Global Tsunami Simulation , 2012 .

[5]  Bram van Leer,et al.  A Control-Volume Model of the Compressible Euler Equations with a Vertical Lagrangian Coordinate , 2013 .

[6]  Feng Xiao,et al.  Global shallow water models based on multi-moment constrained finite volume method and three quasi-uniform spherical grids , 2014, J. Comput. Phys..

[7]  Frank Giraldo The Nonhydrostatic Unified Model of the Atmosphere (NUMA): CG Dynamical Core , 2011 .

[8]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[9]  Joanna Szmelter,et al.  An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution , 2013, J. Comput. Phys..

[10]  Yu Wang,et al.  New generation of multi-scale NWP system (GRAPES): general scientific design , 2008 .

[11]  Feng Xiao,et al.  A global shallow‐water model on an icosahedral–hexagonal grid by a multi‐moment constrained finite‐volume scheme , 2014 .

[12]  T. Yabe,et al.  The constrained interpolation profile method for multiphase analysis , 2001 .

[13]  Feng Xiao,et al.  A multi-moment constrained finite volume method on arbitrary unstructured grids for incompressible flows , 2016, J. Comput. Phys..

[14]  J. Prusa,et al.  EULAG, a computational model for multiscale flows , 2008 .

[15]  Dimitri J. Mavriplis,et al.  A dynamic hp-adaptive discontinuous Galerkin model for shallow water flows on the sphere with adjoint capabilities , 2012 .

[16]  Feng Xiao,et al.  A global multimoment constrained finite-volume scheme for advection transport on the hexagonal geodesic grid , 2011 .

[17]  Eric Deleersnijder,et al.  A stabilization for three‐dimensional discontinuous Galerkin discretizations applied to nonhydrostatic atmospheric simulations , 2016 .

[18]  G. Doms,et al.  The Nonhydrostatic Limited-Area Model LM (Lokal-Modell) of DWD: Part I: Scientific Documentation (Ve , 1999 .

[19]  F. Mesinger,et al.  A global shallow‐water model using an expanded spherical cube: Gnomonic versus conformal coordinates , 1996 .

[20]  Guillaume Houzeaux,et al.  A variational multiscale stabilized finite element method for the solution of the Euler equations of nonhydrostatic stratified flows , 2013, J. Comput. Phys..

[21]  Mark A. Taylor,et al.  CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model , 2012, Int. J. High Perform. Comput. Appl..

[22]  Sergio Ortobelli Lozza,et al.  A conservative discontinuous target volatility strategy , 2017 .

[23]  K. Droegemeier,et al.  The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification , 2000 .

[24]  Christopher Edwards,et al.  Multi-scale geophysical modeling using the spectral element method , 2002, Comput. Sci. Eng..

[25]  Feng Xiao,et al.  Shallow water model on cubed-sphere by multi-moment finite volume method , 2008, J. Comput. Phys..

[26]  F. Xiao,et al.  Numerical simulations of free-interface fluids by a multi-integrated moment method , 2005 .

[27]  M. Desgagné,et al.  The Canadian MC2: A Semi-Lagrangian, Semi-Implicit Wideband Atmospheric Model Suited for Finescale Process Studies and Simulation , 1997 .

[28]  Feng Xiao,et al.  CIP/multi-moment finite volume method with arbitrary order of accuracy , 2007 .

[29]  H. Tufo,et al.  Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core , 2009 .

[30]  William C. Skamarock,et al.  A time-split nonhydrostatic atmospheric model for weather research and forecasting applications , 2008, J. Comput. Phys..

[31]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[32]  Takashi Yabe,et al.  A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One-dimensional solver , 1991 .

[33]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[34]  F. Xiao,et al.  A Multimoment Finite-Volume Shallow-Water Model On The Yin-Yang Overset Spherical Grid , 2008 .

[35]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[36]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[37]  Feng Xiao,et al.  Development of a hybrid parallel MCV-based high-order global shallow-water model , 2017, The Journal of Supercomputing.

[38]  Mark A. Taylor,et al.  A compatible and conservative spectral element method on unstructured grids , 2010, J. Comput. Phys..

[39]  Stephen J. Thomas,et al.  Parallel Semi-Implicit Spectral Element Methods for Atmospheric General Circulation Models , 2000, J. Sci. Comput..

[40]  Chungang Chen,et al.  An MCV Nonhydrostatic Atmospheric Model with Height-Based Terrain following Coordinate: Tests of Waves over Steep Mountains , 2016 .

[41]  Francis X. Giraldo,et al.  A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..

[42]  Feng Xiao,et al.  Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows , 2006, J. Comput. Phys..

[43]  Feng Xiao,et al.  High order multi-moment constrained finite volume method. Part I: Basic formulation , 2009, J. Comput. Phys..

[44]  T. Clark A small-scale dynamic model using a terrain-following coordinate transformation , 1977 .

[45]  Francis X. Giraldo,et al.  A Scalable Spectral Element Eulerian Atmospheric Model (SEE-AM) for NWP: Dynamical Core Tests , 2004 .

[46]  Zhao Zhang,et al.  An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution , 2015, J. Comput. Phys..

[47]  Chungang Chen,et al.  Fourth order transport model on Yin-Yang grid by multi-moment constrained finite volume scheme , 2012, ICCS.

[48]  Francis X. Giraldo,et al.  A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling , 2009, SIAM J. Sci. Comput..

[49]  Feng Xiao,et al.  A 4th-order and single-cell-based advection scheme on unstructured grids using multi-moments , 2005, Comput. Phys. Commun..

[50]  D. Lüthi,et al.  A new terrain-following vertical coordinate formulation for atmospheric prediction models , 2002 .

[51]  R. Hodur The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) , 1997 .

[52]  Mark A. Taylor,et al.  The Spectral Element Atmosphere Model (SEAM): High-Resolution Parallel Computation and Localized Resolution of Regional Dynamics , 2004 .

[53]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[54]  Chungang Chen,et al.  An accurate multimoment constrained finite volume transport model on Yin-Yang grids , 2013, Advances in Atmospheric Sciences.

[55]  Feng Xiao,et al.  A global shallow water model using high order multi-moment constrained finite volume method and icosahedral grid , 2010, J. Comput. Phys..

[56]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[57]  Ronald B. Smith Linear Theory of Stratified Flow past an Isolated Mountain in Isosteric Coordinates , 1988 .

[58]  Richard C. J. Somerville,et al.  On the use of a coordinate transformation for the solution of the Navier-Stokes equations , 1975 .

[59]  Feng Xiao,et al.  A multi-moment finite volume formulation for shallow water equations on unstructured mesh , 2010, J. Comput. Phys..

[60]  Feng Xiao,et al.  Unified formulation for compressible and incompressible flows by using multi-integrated moments I: one-dimensional inviscid compressible flow , 2004 .

[61]  Henry M. Tufo,et al.  High-order Galerkin methods for scalable global atmospheric models , 2007, Comput. Geosci..